Cho hình chóp S.ABC có S A ⊥ ( A B C ) , AC=b, AB=c, B A C ^ = α . Gọi B', C' lần lượt là hình chiếu vuông góc của A lên SB, SC. Tính bán kính mặt cầu ngoại tiếp hình chóp A.BCC'B' theo b, c, α .
Cho hình chóp S.ABC có SA, SB, SC đôi một vuông góc với nhau và SA = SB = SC = a . Gọi B′,C′ lần lượt là hình chiếu vuông góc của S trên AB,AC. Tính thể tích hình chóp S.AB′C′.
A. a 3 2
B. a 3 6
C. a 3 24
D. a 3 12
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A. ; AB = a, AC= a 3 .Tam giác SAB, SAC lần lượt vuông tại B và C. Khối cầu ngoại tiếp hình chóp S.ABC có thể tích bằng 5 5 6 πa 3 . Tính thể tích khối chóp S.ABC
A. a 3 3 3
B. a 3 3 2
C. a 3 3 12
D. a 3 3 6
Cho hình chóp S.ABC có S A ⊥ ( A B C ) , AC = b, AB = c, . Gọi B', C' lần lượt là hình chiếu vuông góc của A lên SB, SC. Tính bán kính mặt cầu ngoại tiếp hình chóp A.BCC'B' theo b, c, α .
Cho hình chóp S.ABC có đáy là tam giác vuông tại A, AB = a, AC = 2a. Mặt bên (SAB), (SCA) lần lượt là các tam giác vuông tại B, C. Biết thể tích khối chóp S.ABC bằng 2 3 a 3 . Bán kính mặt cầu ngoại tiếp hình chóp S.ABC?
Cho hình chóp S.ABC có đáy là tam giác vuông tại A, AB=a, AC=2a. Mặt bên (SAB), (SCA) lần lượt là các tam giác vuông tại B, C. Biết thể tích khối chóp S.ABC bằng 2 3 a 3 . Bán kính mặt cầu ngoại tiếp hình chóp S.ABC?
Cho hình chóp tam giác đều S.ABC có AC = SC = 8 cm , SH = 6,93 cm ,S tam giác ABC = 27,72 cm2
a) Cho biết độ dài trung đoạn của hình chóp S.ABC.
b) Tính diện tích xung quanh và diện tích toàn phần của hình chóp S.ABC.
c) Tính thể tích của hình chóp tam giác đều S.ABC biết chiều cao của hình chóp là 7,5 cm
a) Độ dài trung đoạn của hình chóp S.ABC là độ dài đoạn thẳng từ trung điểm của cạnh đáy đến đỉnh của hình chóp. Vì tam giác ABC là tam giác đều, nên ta có thể tính độ dài trung đoạn bằng cách sử dụng công thức Pythagoras: Trung đoạn = căn bậc hai của (AC^2 - (AC/2)^2) = căn bậc hai của (8^2 - (8/2)^2) = căn bậc hai của (64 - 16) = căn bậc hai của 48 = 4 căn 3 cm
b) Diện tích xung quanh của hình chóp S.ABC là tổng diện tích các mặt bên của hình chóp. Vì tam giác ABC là tam giác đều, nên diện tích mặt bên của hình chóp là diện tích tam giác đều. Ta có công thức tính diện tích tam giác đều: Diện tích tam giác đều = (cạnh^2 * căn 3) / 4 = (8^2 * căn 3) / 4 = 16 căn 3 cm^2
Diện tích xung quanh = Diện tích tam giác đều + Diện tích đáy = 16 căn 3 + 27,72 = 16 căn 3 + 27,72 cm^2
Diện tích toàn phần của hình chóp là tổng diện tích xung quanh và diện tích đáy: Diện tích toàn phần = Diện tích xung quanh + Diện tích đáy = 16 căn 3 + 27,72 + 27,72 = 16 căn 3 + 55,44 cm^2
c) Thể tích của hình chóp tam giác đều S.ABC được tính bằng công thức: Thể tích = (Diện tích đáy * Chiều cao) / 3 = (27,72 * 7,5) / 3 = 69,3 cm^3
Cho hình chóp S.ABC với SA⊥SB, SB⊥SC, SC⊥SA, S A = S B = S C = a . Gọi B′,C′ lần lượt là hình chiếu vuông góc của S trên AB,AC. Thể tích của hình chóp S.AB′C′ là
A. a 3 3
B. a 3
C. a 3 24
D. a 3 12
Đáp án C
Vì SA=SB=SC suy ra tam giác SAB và tam giác SAC cân tại S. Vậy B′,C′ lần lượt là trung điểm của AB,AC.
Ta có:
Cho hình chóp S.ABC với SA⊥SB, SB⊥SC, SC⊥SA, SA=SB=SC=a. Gọi B′,C′ lần lượt là hình chiếu vuông góc của S trên AB,AC. Thể tích của hình chóp S.AB′C′ là
Cho hình chóp S.ABC với SA ⊥ SB , SB ⊥ SC , SC ⊥ SA ; SA = SB = SC = a . Gọi B′,C′ lần lượt là hình chiếu vuông góc của S trên AB, AC. Thể tích của hình chóp S.AB′C′ là
A. a 3 24
B. a 3
C. a 3 3
D. a 3 12
Cho hình chóp S.ABC với SA⊥SB, SB⊥SC, SC⊥SA, SA=SB=SC=a Gọi B′,C′ lần lượt là hình chiếu vuông góc của S trên AB,AC. Thể tích của hình chóp S.AB′C′ là
A. a 3 3
B. a 3
C. a 3 24
D. a 3 12
Chọn C
Vì SA=SB=SC suy ra tam giác SAB và tam giác SAC cân tại S. Vậy B′,C′ lần lượt là trung điểm của AB,AC
Ta có