Cho hàm số y=f(x) có đạo hàm trên (a;b). Phát biểu nào sau đây là đúng ?
A. Hàm số không đổi khi và chỉ khi .
B. Hàm số đồng biến khi và chỉ khi và tại hữu hạn giá trị
C. Hàm số nghịch biến khi và chỉ khi .
D. Hàm số đồng biến khi và chỉ khi .
Cho hàm số y = f(x) có đạo hàm trên R và bảng xét dấu của đạo hàm như sau:
Hàm số y= f(x) có bao nhiêu điểm cực trị?
A. 2
B. 0
C. 1
D. 3
Đáp án A
Dựa vào bảng biến thiên ta thấy rằng .
đổi dấu khi qua hai điểm và không đổi dấu khi qua điểm x=1 nên hàm số y= f(x) có hai diểm cực trị.
Cho hàm số y=f(x) có đạo hàm trên ℝ và bảng xét dấu của đạo hàm như sau:
Hàm số y=f(x)có bao nhiêu điểm cực trị?
A. 2.
B. 0.
C. 1.
D. 3.
Dựa vào bảng biến thiên ta thấy rằng f’(-2)=f’(1)=f’(3)=0.
f’(x)đổi dấu khi qua hai điểm x=-2; x=3 và f’(x) không đổi dấu khi qua điểm x=1 nên hàm số y=f(x) có hai diểm cực trị.
Đáp án A
Cho hàm số y= f( x) có đạo hàm là hàm số y= f’(x) trên R. Biết rằng hàm số y= f’ ( x-2) + 2 có đồ thị như hình vẽ bên dưới. Hàm số y= f( x) nghịch biến trên khoảng nào?
A. .
B. (- 1; 1)
C. .
D. .
Cho hàm số y= f(x) có đạo hàm trên R và đồ thị hình bên dưới là đồ thị của đạo hàm f’(x) .
Hàm số nghịch biến trên khoảng
A (-3 ; -2)
B. (- 2 ; -1)
C. (- 1 ; 0)
D. (0 ; 2)
Cho hàm số y=f(x) có đạo hàm liên tục trên ~ , hàm số y=f’(x) có đồ thị hàm số như hình dưới đây
Hàm số y=f(x) đồng biến trên khoảng nào trong các khoảng sau:
A. (-∞;2); (1;+∞)
B. (-2;+∞)/{1}
C. (-2;+∞)
D. (-4;0)
Chọn C
Từ đồ thị hàm số y=f’(x) ta có bảng biến thiên cho hàm số y=f(x) như sau:
Nhìn vào bảng biến thiên ta thấy ngay trong khoảng (-2;+∞) thì hàm số y=f(x) đồng biến
Cho hàm số y= f( x) có đạo hàm là hàm số f’(x) trên R. Biết rằng hàm số có đồ thị như hình vẽ bên dưới. Hàm số y= f(x) nghịch biến trên khoảng nào?
A. (-3; -1) và (1; 3).
B. (-1; 1) và (3; 5).
C. .
D. (- 5; -3) và (-1; 1).
Cho hàm số y = f(x) có đạo hàm trên R và có đồ thị hàm số y = f'(x) như hình bên. Hàm số y= f (3-x) đồng biến trên khoảng nào dưới đây?
A.
B.
C.
D.
=> hàm số y=g(x) nghịch biến trên (-2; -1)
=>hàm số y=g(x) đồng biến trên (-1;2)
Chọn B
Cho hàm số y = f(x) có đạo hàm trên R và có đồ thị hàm số y=f'(x) như hình bên. Hàm số y=f(3-x) đồng biến trên khoảng nào dưới đây?
Cho hàm số y= f(x) có đạo hàm trên R và đồ thị hình bên dưới là đồ thị của đạo hàm số : y= f’(x) . Hàm số y= g(x) = f(x) + x đạt cực tiểu tại điểm
A. x= 0
B.x= 1
C. x= 2
D. Không có điểm cực tiểu
Cho các mệnh đề :
1) Hàm số y=f(x) có đạo hàm tại điểm x 0 thì nó liến tục tại x 0 .
2) Hàm số y=f(x) liên tục tại x 0 thì nó có đạo hàm tại điểm x 0 .
3) Hàm số y=f(x) liên tục trên đoạn [a;b] và f(a).f(b)<0 thì phương trình f(x) có ít nhất một nghiệm trên khoảng (a;b).
4) Hàm số y=f(x) xác định trên đoạn [a;b] thì luôn tồn tại giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó.
Số mệnh đề đúng là:
A. 2
B. 4
C. 3
D. 1