Cho hai mặt phẳng P : x - 2 y + z = 0 và Q : 2 x + y - z - 1 = 0 . Tìm tập hợp các điểm M cách đều (P) và (Q).
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):x-y+z-1=0 và (Q):2x+y+1=0. Viết phương trình mặt phẳng đi qua A(1;-1;-2) vuông góc với hai mặt phẳng (P) và (Q).
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):x–y+z -1= 0 và (Q):2x+y+1= 0. Viết phương trình mặt phẳng đi qua A(1;-1;-2) vuông góc với hai mặt phẳng (P) và (Q).
A. x+2y+3z+7=0.
B. x-2y+3z+3=0.
C. x+2y-3z–5=0.
D. x–2y–3z-9=0.
Phương trình mặt phẳng đi qua điểm A(1;1;1) và vuông góc với hai mặt phẳng P : x+y-z-2=0, Q : x-y+z-1=0
Trong không gian Oxyz, cho ba mặt phẳng (P), (Q), (R) lần lượt có phương trình là ( m 2 + m)x - (m + 2)y + z = 0; x + y + z = 0; 2x + y - z = 0, trong đó m là tham số. Với những giá trị nào của m thì mặt phẳng (P) đồng thời vuông góc với cả hai mặt phẳng (Q) và (R)?
A. m = 1
B. m = -1
C. m = -3/2
D. m = -3/2 hoặc m = -1
Đáp án A
Ta có:
Mặt phẳng (P) đồng thời vuông góc với cả hai mặt phẳng (Q) và (R) khi và chỉ khi
Trong không gian Oxyz, cho hai mặt phẳng (P):2x - y + z = 0, (Q):x - z = 0. Giao tuyến của hai mặt phẳng (P) và (Q) có một vectơ chỉ phương là:
A. a ⇀ = (1; 0: -1)
B. a ⇀ = (1; -3: 1)
C. a ⇀ = (1; 3: 1)
D. a ⇀ = (2; -1: 1)
Cho hai mặt phẳng ( P ) : ( m - 1 ) x + 2 y – z + 10 = 0 v à ( Q ) : - x + ( 2 m + 1 ) y – m z + 2 = 0 . Tìm m để hai mặt phẳng trên vuông góc với nhau.
A. m = - 3 4
B. m = 3 4
C. m = 4 3
D. m = - 4 3
Chọn A.
Để hai mặt phẳng đã cho vuông góc với nhau thì
Phương trình mặt phẳng đi qua điểm A(1;1;1) và vuông góc với hai mặt phẳng ( P ) : x + y - z - 2 = 0 , ( Q ) : x - y + z - 1 = 0 là
A. x + y + z - 3 = 0
B. x - 2y + z = 0
C. x + z - 2 = 0
D. x + y - 2 = 0
Trong không gian Oxyz, cho hai mặt phẳng P : 2 x − y + z − 2 = 0 v à Q : 2 x − y + z + 1 = 0 . Số mặt cầu đi qua A 1 ; − 2 ; 1 và tiếp xúc với hai mặt phẳng (P), (Q) là
A. 0
B. 1
C. Vô số
D. 2
Cho hai mặt phẳng P : 2 x - y + z + 1 = 0 và Q : x + y + 2 z + 2 = 0 . Gọi d = P ∩ Q . Viết phương trình (d)
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P): x + 2 y - z - 1 = 0 , (Q): 3x-(m+2)y+(2m-1)z+3=0. Tìm m để hai mặt phẳng (P), (Q) vuông góc với nhau.