Những câu hỏi liên quan
LA
Xem chi tiết
CB
9 tháng 10 2021 lúc 16:23

 

undefined

Bình luận (0)
HL
Xem chi tiết
VN
25 tháng 5 2018 lúc 7:11

q chịu tác dụng của hai điện tích q 1   v à   q 2 : → F → = F → 1 + F → 2

Do F → 1 ↑ ↑ F → 2  nên  F = F 1 + F 2 = k q 1 q ε A C 2 + k q 2 q ε B C 2 = 2 , 25.10 − 4

Bình luận (0)
HL
Xem chi tiết
VN
28 tháng 2 2018 lúc 5:31

q chịu tác dụng của hai điện tích q 1   v à   q 2 :  F → = F → 1 + F → 2

Do F → 1 ↑ ↓ F → 2  nên  F = F 1 − F 2 = k q 1 q ε A C 2 − k q 2 q ε B C 2 = 0

Bình luận (0)
HB
Xem chi tiết
H24
Xem chi tiết
HL
Xem chi tiết
VN
19 tháng 12 2019 lúc 15:55

Đáp án: B

F = F1 + F2 = 0,18 + 0,18 = 0,36 N

Bình luận (0)
BT
Xem chi tiết
TT
16 tháng 11 2017 lúc 20:33

a) \(\dfrac{2}{x^2}=\dfrac{8}{\left(0.08+x\right)^2}\)

=> x= 0.08 (m ) => Q3 đặt cách Q1= 0.08m cách Q2= 0.16m

b) \(\dfrac{\left|q1.q3\right|}{0.08^2}=\dfrac{\left|q1.q2\right|}{0.08^2}\)

=> q1=q2=-8.10^-8C

Bình luận (0)
BT
Xem chi tiết
MP
7 tháng 6 2018 lúc 12:46

a) vì \(q_1\)\(q_2\) trái dấu nên \(q_3\) không thể đặc ở giữa \(AB\) và cũng không thể nằm ngoài giá của \(\overrightarrow{AB}\) vì khi đó tổng các lực tác dụng lên \(q_3\) sẽ khác không .

theo định luật \(Cu-lông\) ta có :

\(F_{13}=\dfrac{k.\left|q_1q_3\right|}{\varepsilon AC^2}=\dfrac{k\left|2.10^{-8}q_3\right|}{\varepsilon AC^2}\) ; \(F_{23}=\dfrac{k\left|q_2q_3\right|}{\varepsilon BC^2}=\dfrac{k\left|-8.10^{-8}q_3\right|}{\varepsilon BC^2}=\dfrac{k\left|8.10^{-8}q_3\right|}{\varepsilon BC^2}\)

\(\)để \(q_3\) cân bằng thì \(F_{13}=F_{23}\Leftrightarrow\dfrac{k\left|2.10^{-8}q_3\right|}{\varepsilon AC^2}=\dfrac{k\left|8.10^{-8}q_3\right|}{\varepsilon BC^2}\)

\(\Leftrightarrow\dfrac{AC^2}{BC^2}=\dfrac{2.10^{-8}}{8.10^{-8}}=\dfrac{1}{4}\Leftrightarrow\dfrac{AC}{BC}=\dfrac{1}{2}\Leftrightarrow BC=2AC\)

\(\Rightarrow A\) là trung điểm của \(BC\) với đoạn \(AB=8cm\) .

b) theo nhận xét ta thấy \(q_3< 0\) vì nếu \(q_3>0\) thì \(F_{31}\) cùng hướng với \(F_{21}\) nên \(q_1\) không thể nào cân bằng

để \(q_1\)\(q_2\) cần bằng thì : \(\left\{{}\begin{matrix}F_{31}=F_{21}\\F_{32}=F_{12}\end{matrix}\right.\Leftrightarrow F_{31}=F_{21}=F_{32}\)

nên ta chỉ cần \(F_{31}=F_{21}\) là đủ

\(\Rightarrow\dfrac{K\left|q_3q_1\right|}{\varepsilon AC^2}=\dfrac{k\left|q_2q_1\right|}{\varepsilon AB^2}\Leftrightarrow\dfrac{k\left|q_3q_1\right|}{\varepsilon8^2}=\dfrac{k\left|q_2q_1\right|}{\varepsilon8^2}\Leftrightarrow\left|q_3\right|=\left|q_2\right|\)

\(\Leftrightarrow\left|q_3\right|=\left|-8.10^{-8}\right|=8.10^{-8}\Leftrightarrow q_3=\pm8.10^{-8}\)

\(q_3< 0\Rightarrow q_3=-8.10^{-8}\)

vậy \(q_3=-8.10^{-8}\)

Bình luận (0)
LP
Xem chi tiết
HL
Xem chi tiết
VN
6 tháng 3 2018 lúc 2:20

Đáp án C

Bình luận (0)