Cho hàm số f(x) có đạo hàm f’(x) có đồ thị như hình vẽ
Hàm số g ( x ) = f ( x ) – x 3 3 + x 2 - x + 2 đạt cực đại tại điểm nào
A. x=2
B. x=0
C. x=1
D. x=-1
Cho hàm số y=f(x) có đạo hàm trên R. Đồ thị hàm số y=f '(x) như hình vẽ bên dưới. Hỏi đồ thị hàm số g(x)=f(x)-x có bao nhiêu điểm cực trị?
A. 1
B. 2
C. 3
D. 4
Cho hàm số y=f(x) có đạo hàm trên R. Đồ thị hàm số y=f’(x) như hình vẽ bên dưới. Hỏi đồ thị hàm số g(x)=-x-f(x) đạt cực đại tại?
A. x = -1
B. x = 0
C. x = 1
D. x = 2
Cho hàm số y= f(x) . Biết f(x) có đạo hàm f’(x) và hàm số y= f’(x) có đồ thị như hình vẽ.
Hàm số g( x) = f(x- 1) đạt cực đại tại điểm nào dưới đây?
A. x= 2
B. x= 4
C . x= 3
D. x= 1
Chọn B
+ Dựa vào đồ thị hàm số ta thấy :
- Hàm số y= f( x) nghịch biến trên khoảng ( - ∞; 1) và ( 3; 5) .
- Hàm số y= f( x) nghịch biến trên khoảng ( 1 ; 3) và ( 5 ; + ∞)
Cho hàm số y=f(x) biết hàm số f(x)có đạo hàm f'(x) và hàm số y=f'(x) có đồ thị như hình vẽ. Đặt g(x0=f(x+1) Kết luận nào sau đây là đúng?
A. Hàm số g(x) đồng biến trên khoảng (3;4)
B. Hàm số g(x) đồng biến trên khoảng (0;1)
C. Hàm số g(x) nghịch biến trên khoảng (4;6)
D. Hàm số g(x) nghịch biến trên khoảng ( 2 ; + ∞ )
Cho hàm số y= f(x) . Biết f(x) có đạo hàm f’(x) và hàm số y= f’(x) có đồ thị như hình vẽ. Đặt g(x) = f(x+1). Kết luận nào sau đây đúng?
A. Hàm số g( x) có hai điểm cực trị.
B. Hàm số g(x) đồng biến trên khoảng (1; 3).
C. Hàm số g(x) nghịch biến trên khoảng (2; 4).
D. Hàm số g(x) có hai điểm cực đại và một điểm cực tiểu.
Cho hàm số y = f ( x ) có đạo hàm liên tục trên ℝ và có đồ thị hàm số y = f ' ( x ) như hình vẽ. Đặt g ( x ) = f ( x 3 ) . Tìm số điểm cực trị của hàm số y = g ( x )
A. 3
B. 5
C. 4
D. 2
Cho hàm số y = f(x) có đạo hàm liên tục trên R đồ thị hàm số y = f’(x) như hình vẽ.
Biết f(2) = –6, f(–4) = –10 và hàm số g(x) = f(x)+ x 2 2 , g(x) có ba điểm cực trị.
Phương trình g(x) = 0?
A. Có đúng 2 nghiệm
B. Vô nghiệm
C. Có đúng 3 nghiệm
D. Có đúng 4 nghiệm
Đáp án B
Phương pháp: Lập bảng biến thiên của g(x) và đánh giá số giao điểm của đồ thị hàm số y = g(x) và trục hoành.
Cách giải:
Xét giao điểm của đồ thị hàm sốy = f’(x) và đường thẳng y = -x ta thấy, hai đồ thị cắt nhau tại ba điểm có hoành độ là: -2;2;4 tương ứng với 3 điểm cực trị của y = g(x).
Bảng biến thiên:
Dựa vào bảng biến thiên ta thấy => phương trình g(x) = 0 không có nghiệm
Cho hàm số f(x) có đạo hàm trên R và có đồ thị hàm y = f'(x) như hình vẽ. Xét hàm số g ( x ) = f ( x 2 - 2 ) . Mệnh đề nào dưới đây sai?
A . H à m s ố g ( x ) đ ồ n g b i ế n t r ê n ( 2 ; + ∞ ) .
B . H à m s ố g ( x ) n g h ị c h b i ế n t r ê n ( - 1 ; 0 ) .
C . H à m s ố g ( x ) n g h ị c h b i ế n t r ê n ( 0 ; 2 ) .
D . H à m s ố g ( x ) n g h ị c h b i ế n t r ê n ( - ∞ ; - 2 ) .
Cho hàm số f(x) có đạo hàm trên ℝ và có đồ thị y=f'(x) như hình vẽ. Xét hàm số g ( x ) = f ( x 2 - 2 ) . Mệnh đề nào sau đây sai?
A. Hàm số g(x) nghịch biến trên (-1;0).
B. Hàm số g(x) nghịch biến trên. ( - ∞ ; - 2 )
C. Hàm số g(x) nghịch biến trên. ( 0 ; 2 )
D. Hàm số g(x) đồng biến trên. ( 2 ; + ∞ )