Những câu hỏi liên quan
IM
Xem chi tiết
KM
Xem chi tiết
NL
Xem chi tiết
MC
Xem chi tiết
T6
13 tháng 8 2015 lúc 10:21

8p+1 nguyên tố

8p-1 là hợp số

Bình luận (0)
NH
9 tháng 1 2016 lúc 21:16

8p➕1 la so nguyen to

8p➖1la hop so

Bình luận (0)
2V
10 tháng 7 2016 lúc 20:45

có 8p+1;8p;8p-1 là 3 số TN liên tiếp 

3 số tự nhiên liên tiếp sẽ có 1 số chia hết cho 3

xét 2 TH

th1 8p-1 chia hết cho 3 suy ra la hợp số thì 8p+1 là số nguyên tố

th2 ngược lại

Bình luận (0)
TA
Xem chi tiết
NH
17 tháng 7 2015 lúc 15:14

Với p=3 =>p-1=23 (thỏa mãn)

                 8p+1=25(loại)

Với p khác 3 =>p không chia hết cho 3 =>8p không chia hết cho 3

mà (8p-1)p(8p+1)là tích của 3 số tự nhiên liên tiếp 

Theo đề bài :8p-1 >3 (p thuộc N) =>8p-1 không chia hết cho 3 

=> 8p+1 chia hết cho 3

mà 8p+1>3 

=>8p+1 là hợp số (ĐPCM)

Bình luận (0)
KG
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NN
5 tháng 10 2016 lúc 8:34

a) - Do p là số nguyên tố nên p là số tự nhiên.

*) Xét p=3k+1 => \(p^2+8=\left(3k+1\right)^2+8=9k^2+6k+9⋮3\) (hợp số)

*) Xét p=3k+2 => \(p^2+8=\left(3k+2\right)^2+8=9k^2+12k+12⋮3\) (hợp số)

*) Xét p=3k => k=1 do p là số nguyên tố => \(p^2+8=9+8=17\) (t/m)

Ta có: \(p^2+2=11\). Mà 11 là số nguyên tố => điều phải chứng minh.

b) (Làm tương tự bài trên)

 - Do p là số nguyên tố => p là số tự nhiên.

*) Xét p=3k+1 => \(8p^2+1=8\left(3k+1\right)^2+1=8\left(9k^2+6k+1\right)+1=3k.8\left(3k+2\right)+\left(8+1\right)⋮3\)(hợp số)

*) Xét p=3k+2 => \(8p^2+1=8\left(3k+2\right)^2+1=8\left(9k^2+12k+4\right)+1=3k.8\left(3k+4\right)+\left(32+1\right)⋮3\) (hợp số)

*) Xét p=3k => k=1 Do p là số nguyên tố => \(8p^2+1=8.9+1=73\)(t/m)

Ta có : \(2p+1=7\). Mà 7 là số nguyên tố => Điều phải chứng minh.

Bình luận (1)
H24
30 tháng 9 2016 lúc 14:00

làm ơn giải hộ mình nhanh lên

Bình luận (0)
VH
Xem chi tiết