Cho hàm số y=f(x) có bảng biến thiên như sau
Giá trị lớn nhất của m để phương trình e 2 f 3 x - 13 2 f 2 x + 7 f ( x ) + 3 2 =m có nghiệm trên đoạn [0;2] là
A. e 4
B. e 3
C. e 15 13
D. e 5
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho hàm số y=f(x) có bảng biến thiên như sau:
Giá trị lớn nhất của m để phương trình: e 2 f 3 x - 13 2 f 2 x + 7 f x + 3 2 = m có nghiệm trên đoạn 0 ; 2
A. e 5
B. e 15 13
C. e 3
D. e 4
Cho hàm số y = f(x) có bảng biến thiên như sau
Tìm tất cả các giá trị của tham số m để phương trình f(x) = 2m có nhiều nhất 2 nghiệm.
A. m ∈ − ∞ ; − 1 2 ∪ 0 ; + ∞
B. m ∈ 0 ; + ∞ ∪ − 1
C. m ∈ − ∞ ; − 1 ∪ 0 ; + ∞
D. m ∈ 0 ; + ∞ ∪ − 1 2
Đáp án A
Phương pháp giải:
Phương trình có nhiều nhất n nghiệm thì xảy ra các trường hợp có n nghiệm, có n – 1 nghiệm, … , vô nghiệm, dựa vào bảng biến thiên để biện luận số giao điểm của hai đồ thị hàm số
Lời giải:
Cho hàm số y=f(x) thỏa mãn f ( 0 ) < 7 6 và có bảng biến thiên như sau:
Giá trị lớn nhất của tham số m để phương trình e 2 f 3 ( x ) - 13 2 f 2 ( x ) + 7 f ( x ) - 1 2 = m có nghiệm trên đoạn [0;2] là:
A. e 2
B. e 15 13
C. e 4
D. e 3
Cho hàm số y = f(x) thỏa mãn f 0 < 7 6 và có bảng biến thiên như sau
Giá trị lớn nhất của m để phương trình e 2 f 3 x - 13 2 f 2 x + 7 f x - 1 2 = m có nghiệm trên đoạn [0;2]
là
A. e 2
B. e 15 13
C. e 4
D. e 3
Cho hàm số y=f(x) xác định, liên tục trên R\{1} và có bảng biến thiên như sau
Tìm tập hợp tất cả các giá trị của tham thực m để phương trình f(x)=m có nghiệm lớn hơn 2
A. ( - ∞ ; 1 )
B. (3;4)
C. ( 1 ; + ∞ )
D. ( 4 ; + ∞ )
Cho hàm số y = f(x) có bảng biến thiên như sau:
Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = m + 1 có 3 nghiệm thực phân biệt?
A. –3 ≤ m ≤ 3
B. –2 ≤ m ≤ 4
C. –2 < m < 4
D. –3 < m < 3
Đáp án D
Phương pháp:
Đánh giá số nghiệm của phương trình f(x) = m + 1 bằng số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m + 1
Cách giải:
Số nghiệm của phương trình f(x) = m + 1 bằng số giao điểm của đồ thị hàm số y = f(x)
và đường thẳng y = m + 1
Để f(x) = m + 1 có 3 nghiệm thực phân biệt thì –2 < m+1 < 4 ó –3 < m < 3
Cho hàm số y=f(x) có bảng biến thiên như sau
Tập hợp tất cả các giá trị của tham số m để phương trình f(x)+m=0 có 2 nghiệm phân biệt là
A. (-2;1)
B. [-1;2)
C. (-1;2)
D. (-2;1]
Cho hàm số y=f(x) có bảng biến thiên như sau
Tập hợp tất cả các giá trị của tham số m để phương trình f(x) + m =0 có 2 nghiệm phân biệt là
Cho hàm số y = f(x) có bảng biến thiên như sau:
Tìm tất cả giá trị thực của tham số m để phương trình f(x) - m - 0 có bốn nghiệm phân biệt.
A. - 3 < m < 2
B. - 3 ≤ m ≤ 2
C. m < - 2
D. m > - 3