Cho hàm số y=f(x). Đồ thị hàm số y=f'(x) như hình vẽ bên. Đặt g ( x ) = 2 f ( x ) + ( x + 1 ) 2 . Mệnh đề nào dưới đây đúng
A. maxg(x) trên [-3; 3] =g(-3)
B. maxg(x) trên [-3; 3] =g(2)
C. maxg(x) trên [-3; 3] =g(1)
D. maxg(x) trên [-3; 3] =g(-1)
Cho hàm số y=f(x) có đạo hàm trên R. Hàm số y=f'(x) có đồ thị như hình vẽ bên. Đặt y=g(x)=f(x)-x. Khẳng định nào sau đây là đúng?
A. Hàm số y=g(x) đạt cực đại tại x=-1
B. Đồ thị hàm số y=g(x) có 3 điểm cực trị
C. Hàm số y=g(x) đạt cực tiểu tại x=1
D. Hàm số y=g(x) đồng biến trên khoảng (-1;2)
Cho hàm số y=f(x) có đạo hàm trên R. Hàm số y=f '(x) có đồ thị như hình vẽ bên. Đặt y = g ( x ) = f ( x ) - x 2 2 . Khẳng định nào sau đây là đúng?
A. Hàm số đồng biến trên khoảng (1;2)
B. Đồ thị hàm số y=g(x) có 3 điểm cực trị
C. Hàm số y=g(x) đạt cực tiểu tại x=-1
D. Hàm số y=g(x) đạt cực đại tại x=1
Cho hàm số y = f(x) có đạo hàm trên R. Hàm số y = f’(x) có đồ thị như hình vẽ bên. Đặt y = g ( x ) = f ( x ) – x 2 2 . Mệnh đề nào sau đây là đúng?
A. g(1)>g(-1)>g(2)
B. g(1)>g(2)>g(-1)
C. g(2)>g(-1)>g(1)
D. g(-1)>g(2)>g(1)
Cho hàm số y = f(x) xác định trên R. Đồ thị hàm số y = f’(x) như hình vẽ bên. Đặt g ( x ) = f ( x ) - 1 3 x 3 - 3 4 x 2 + 3 2 x + 2018 . Điểm cực tiểu của hàm số g(x) đoạn [–3;1] là:
A. x C T = - 1
B. x C T = 1 2
C. x C T = - 2
D. x C T = 0
Đáp án A.
Phương pháp: Tính g’(x) tìm các nghiệm của phương trình g’(x) = 0
Điểm x0 được gọi là điểm cực tiểu của hàm số y = g(x) khi và chỉ khi g’(x0) = 0 và qua điểm x = x0 thì g’(x) đổi dấu từ âm sang dương.
Cách giải:
Khi x<1 ta có:
Khi x>1 ta có:
Qua x = 1, g’(x) đổi dấu từ dương sang âm => x = 1 là điểm cực đại của đồ thị hàm số y = g(x)
Chứng minh tương tự ta được x = –1 là điểm cực tiểu và x = –3 là điểm cực đại của đồ thị hàm số y = g(x)
Cho hàm số y=f(x) có đạo hàm trên R. Hàm số y=f '(x) có đồ thị như hình vẽ bên. Đặt y = g ( x ) = f ( x ) - x 3 3 + x 2 - x + 1 . Khẳng định nào sau đây là đúng?
A. g(1)>g(0)>g(2)
B. g(1)>g(2)>g(0)
C. g(2)>g(0)>g(1)
D. g(0)>g(2)>g(1)
Cho hàm số y=f(x) có đạo hàm trên R. Đồ thị hàm số y=f’(x) như hình vẽ bên dưới. Hỏi đồ thị hàm số g(x)=-x-f(x) đạt cực đại tại?
A. x = -1
B. x = 0
C. x = 1
D. x = 2
Cho hàm số y=f(x) có đạo hàm trên R. Đồ thị hàm số y=f '(x) như hình vẽ bên dưới. Hỏi đồ thị hàm số g(x)=f(x)-x có bao nhiêu điểm cực trị?
A. 1
B. 2
C. 3
D. 4
Cho hàm số y=f(x) có đạo hàm liên tục trên R và có
đồ thị y=f'(x) như hình vẽ bên. Đặt g ( x ) = f ( x ) - x 2 2 biết rằng
đồ thị của hàm g(x) luôn cắt trục hoành tại 4 điểm phân biệt.
Mệnh đề nào dưới đây đúng
A. g ( 0 ) > 0 g ( 1 ) < 0 g ( - 2 ) g ( 1 ) > 0
B. g ( 0 ) > 0 g ( 1 ) > 0 g ( - 2 ) g ( 1 ) < 0
C. g ( 1 ) < 0 g ( 0 ) > 0
D. g ( 0 ) > 0 g ( - 2 ) < 0
Cho hàm số y = f ( x ) có đồ thị y = f ' ( x ) như hình vẽ bên. Đồ thị hàm số g ( x ) = 2 f ( x ) - ( x - 1 ) 2 có tối đa bao nhiêu điểm cực trị?
A. 3
B. 5
C. 6
D. 7