Cho hàm số y = f x xác định trên ℝ và có đồ thị hàm số y = f ' x như hình vẽ:
Số tiếp tuyến của đồ thị hàm số f x vuông góc với đường thẳng x + 4 y + 2018 = 0 là
A.4
B. 3
C. 2
D. 1.
Cho hàm số y=f(x) xác định và liên tục trên ℝ . Đồ thị của hàm số f(x) như hình bên. Số điểm cực trị của đồ thị hàm số y=f(f(x)) bằng?
A. 8.
B. 9
C. 10.
D. 11.
Cho hàm số f(x) có đạo hàm f'(x) xác định, liên tục trên ℝ và có đồ thị f'(x) như hình vẽ bên. Hàm số y = f(x) đồng biến trên khoảng nào dưới đây?
Cho hàm số y = f(x) xác định trên ℝ và có đồ thị hàm số y = f '(x) như hình vẽ bên. Xét các khẳng định sau:
(I) Hàm số y = f(x) có ba cực trị.
(II) Phương trình f(x) = m + 2018 có nhiều nhất ba nghiệm.
(III) Hàm số y = f(x + 1) nghịch biến trên khoảng (0;1) .
Số khẳng định đúng là:
A. 1
B. 3
C. 2
D. 0
Đáp án C
Ta có f ' x = 0 ⇔ x = 1 ; 2 ; 3 ⇒ hàm số có 3 điểm cực trị
Lại có g x = f x - m - 2018 ⇒ g ' x = f ' x = 0 ⇒ có 3 nghiệm phân biệt
Suy ra phương trình f x = m + 2018 có nhiều nhất 4 nghiệm
Xét y = f x + 1 ⇒ y ' = f ' x + 1 < 0 ⇔ [ x + 1 ∈ 1 ; 2 x + 1 ∈ 3 ; + ∞ ⇔ [ 0 < x < 1 x > 2
Suy ra hàm số y = f(x + 1) nghịch biến trên khoảng (0;1).
Cho hàm số y = f(x) xác định trên ℝ và có đồ thị của hàm số f ' ( x ) , biết f ( 3 ) + f ( 2 ) = f ( 0 ) + f ( 1 ) và các khẳng định sau:
Hàm số y = f(x) có 2 điểm cực trị.
Hàm số y = f(x) đồng biến trên khoảng ( - ∞ ; 0 ) .
Max [ 0 ; 3 ] f ( x ) = f ( 3 ) .
Min ℝ f ( x ) = f ( 2 ) .
Max [ - ∞ ; 2 ] f ( x ) = f ( 0 ) .
Số khẳng định đúng là
A. 2.
B. 3.
C. 4.
C. 4.
Chọn C.
Dựa vào đồ thị hàm số f ' ( x ) suy ra BBT của hàm số y = f(x)
Khẳng định 1, 2, 5 đúng, khẳng định 4 sai.
Xét khẳng định 3: Ta có:
f ( 3 ) + f ( 2 ) = f ( 0 ) + f ( 1 ) ⇒ f ( 3 ) - f ( 0 ) = f ( 1 ) - f ( 2 ) > 0
Do đó f ( 3 ) > f ( 0 ) ⇒ Vậy khẳng định 3 đúng.
Cho hàm số y=f(x) xác định trên ℝ và có đồ thị của hàm số f’(x) và các khẳng định sau:
(1). Hàm số y=f(x) đồng biến trên khoảng 1 ; + ∞
(2). Hàm số y=f(x) nghịch biến trên khoảng - ∞ ; - 2
(3). Hàm số y=f(x) nghịch biến trên khoảng - 2 ; 1 .
(4). Hàm số y = f x 2 đồng biến trên khoảng - 1 ; 0
(5). Hàm số y = f x 2 nghịch biến trên khoảng (1;2)
Số khẳng định đúng là
A. 4
B. 3
C. 2
D. 5
Cho hàm số y=f(x) xác định trên ℝ và có đồ thị của hàm số f'(x), biết f(3)+f(20=f(0)+f(1) và các khẳng định sau:
1) Hàm số y=f(x) có 2 điểm cực trị
2) Hàm số y=f(x) đồng biến trên khoảng - ∞ ; 0
3) M a x 0 ; 3 f x = f 3
4) M a x ℝ f x = f 2
5) M a x - ∞ ; 2 f x = f 0 .
Số khẳng định đúng là
A. 2
B. 3
C. 4
D. 5
Cho hàm số f(x) xác định trên ℝ và có đồ thị hàm số y = f '(x) là đường cong trong vẽ dưới đây.Mệnh đề nào dưới đây đúng ?
A. f(x) đồng biến trên khoảng (1;2)
B. f(x) nghịch biến trên khoảng (0;2)
C. f(x) đồng biến trên khoảng (-2;1)
D. f(x) nghịch biến trên khoảng (-1;1)
Đáp án B
Dựa vào đồ thị hàm số f ' (x) ta thấy f ' x < 0 ⇔ [ x < - 2 0 < x < 2 và f ' ( x ) > 0 ⇔ [ x > 2 - 2 < x < 0 .
Do đó hàm số f(x) nghịch biến trên khoảng (0;2)
Cho hàm số y= f(x) xác định và có đạo hàm trên ℝ thỏa mãn f 1 + 2 x 2 = x - f 1 - x 3 . Viết phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm có hoành độ bằng 1.
A. y = - 1 7 x - 6 7
B. y = 1 7 x - 8 7
C. y = - 1 7 x + 8 7
D. y = - x + 6 7
Đáp án A
Đặt f 1 = a f ' 1 = b , thay x = 0 vào giả thiết, ta được f 2 1 = - f 3 0 ⇔ a 3 + a 2 = 0 ⇔ [ a = 0 a = - 1
Đạo hàm cả 2 vế biểu thức f 2 1 + 2 x = x - f 3 1 - x , ta đưuọc
4 f ' 1 + 2 x . f 1 + 2 x = 1 + 3 f ' 1 - x . f 2 1 - x 1
Thay x = 0 vào (1), ta có 4 f ' 1 . f 1 = 1 + 3 f ' 1 . f 2 1 ⇔ 4 a b = 1 + 3 a 2 b 2
TH1. Với a = 0 thay vào (2), ta được 0 = 1 (vô lí)
TH2. Với a = -1 thay vào (2), ta được - 4 b = 1 + 3 b ⇔ b = - 1 7 ⇒ f ' 1 = - 1 7
Vậy phương trình tiếp tuyến cần tìm là y - f 1 = f ' 1 x - 1 ⇒ y = - 1 7 x - 6 7 .
Cho hàm số y = f(x) xác định, liên tục trên ℝ và có bảng biến thiên như hình bên. Đồ thị hàm số y=f(x) cắt đường thẳngy=2019 tại bao nhiêu điểm?
A. 2
B. 1
C. 0
D. 4
Cho hàm số y =f(x) xác định và liên tục trên ℝ , có bảng biến thiên như hình vẽ bên. Đồ thị hàm số y = f(x) cắt đường thẳng y = - 2018 tại bao nhiêu điểm?
A. 2
B. 4
C. 0
D. 1
Đáp án A
Dựa vào bảng biến thiên ta suy ra đường thẳng y = - 2018 cắt đồ thị hàm số tại 2 điểm