Cho hàm số y = f ( x ) xác định trên R, có bảng biến thiên như sau. Hàm số y = f ( x ) đạt cực đại tại điểm
A. x=4
B. x=-2
C. x=-1
D. x=3
Hàm số y = f(x) xác định và có đạo hàm trên R\{-2;2} có bảng biến thiên như sau.
Hàm số y = f(x) xác định và có đạo hàm trên R\{-2;2} có bảng biến thiên như sau.
Gọi k, l lần lượt là số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = 1 f ( x ) - 2018 . Tính giá trị k + l
A. k + l = 2.
B. k + l = 3.
C. k + l = 4.D. k + l = 5.
D. k + l = 5.
Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên như sau:
Đồ thị hàm số y = | f ( x ) | có bao nhiêu điểm cực trị?
A. 2
B. 3
C. 4
D. 5
Chọn B.
Cách 1: Số điểm cực trị của đồ thị hàm số y=|f(x)| bằng số điểm cực trị của đồ thị hàm số y=f(x) cộng với số giao điểm của đồ thị hàm số y=f(x)với trục hoành (không tính điểm cực trị)
Vì đồ thị hàm số y=f(x) có 2 điểm cực trị và cắt trục Ox tại 1 điểm nên đồ thị hàm số y=|f(x)| có 2 + 1 = 3 điểm cực trị
Đáp án: 3 cực trị
Cho hàm số y = f(x) xác định trên R, có bảng biến thiên sau
Hàm số y = f(x) đồng biến trên khoảng nào dưới đây?
A. (0;2)
B. (-1;3)
C. (- ∞ ;3)
D. (- ∞ ;0)
Cho hàm số y = f(x) xác định trên R, có bảng biến thiên sau
Hàm số y = f(x) đạt cực đại tại điểm
A. x = 4
B. x = -2
C. x = -1
D. x = 3
Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên như hình sau
Đồ thị hàm số y=f(x) cắt đường thẳng y = -2018 tại bao nhiêu điểm ?
A. 4
B. 0
C. 2
D. 1
Chọn C.
Dựa vào BBT ta thấy đường thẳng y = -2018 nằm dưới điểm cực tiểu của đồ thị hàm số, suy ra đường thẳng y = -2018 cắt đồ tị hàm số tại 2 điểm
Cho hàm số y=f(x) liên tục và xác định trên R có bảng biến thiên như sau
Hàm số đạt cực điểm tại điểm
A. x = 1
B. x = 0
C. x = 5
D. x = 2
Cho hàm số y = f(x) hàm xác định trên R\{2}, liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau. Mệnh đề nào dưới đây đúng?
A. Hàm số có giá trị lớn nhất bằng 10
B. Giá trị cực đại của hàm số là y C D = 10
C. Giá trị cực tiểu của hàm số là y C T = - 3
D. Giá trị cực đại của hàm số là y C D = 3
Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên như sau:
Khẳng định nào sau đây đúng?
A. Hàm số có giá trị nhỏ nhất bằng 0 và giá trị lớn nhất bằng 2
B. Giá trị cực đại của hàm số bằng 5
C. Hàm số có đúng một điểm cực trị
D. Hàm số đạt cực tiểu tại x = 2 và x = 8
Cho hàm số y = f(x) xác định và liên tục trên R và có bảng biến thiên như sau:
Số nghiệm của phương trình f(x) - 3 = 0 là
A. 3
B. 0
C. 1
D. 2
Đáp án C
Ta có . Đây là phương trình hoành độ giao điểm giữa đồ thị hàm số và đường thẳng .
Dựa vào bảng biến thiên ta thấy đường thẳng và đồ thị hàm số có đúng 1 điểm chung.