Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = x 3 - 3 x + 2 cắt đường thẳng y = m - 1 tại 3 điểm phân biệt
A. 1 ≤ m ≤ 5
B. 1 < m < 5
C. 1 ≤ m < 5
D. 1 < m ≤ 5
Cho hàm số y=f(x) liên tục trên R, có đồ thị (C) như hình bên. Tìm tất cả các giá trị thực của tham số m để đường thẳng y=2m-1 cắt đồ thị (C) tại 2 điểm phân biệt
A.
B.
C.
D.
Cho hàm số y = f ( x ) liên tục trên R, có đồ thị (C) như hình bên. Tìm tất cả các giá trị thực của tham số m để đường thẳng y = 2 m - 1 cắt đồ thị (C) tại 2 điểm phân biệt
A. m > 3
B. m < 1
C. m = 1 m = 3
D. 1 < m < 3
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = 2 x 3 - 3 ( m + 1 ) x 2 + 6 m x có hai điểm cực trị A , B sao cho đường thẳng AB vuông góc với đường thẳng : y = x + 2 .
Chọn C
[Phương pháp tự luận]
Ta có : y = 6 x 2 - 6 ( m + 1 ) x + 6 m
Điều kiện để hàm số có 2 điểm cực trị là m ≠ 1
Hệ số góc đt AB là k = - ( m - 1 ) 2
Đt AB vuông góc với đường thẳng y = x + 2
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y=2x3-3( m+1) x2+ 6mx có hai điểm cực trị A; B sao cho đường thẳng AB vuông góc với đường thẳng y= x+ 2.
A. 0; 3
B. 2; 4
C. 0; 2
D. 1; 3
+ Ta có đạo hàm y’ = 6x2- 6( m+ 1) x+ 6m
Điều kiện để hàm số có 2 điểm cực trị là : m≠ 1
Tọa độ 2 điểm cực trị là A( 1 ; 3m-1) và B ( m ; -m3+ 3m2)
+ Hệ số góc đường thẳng AB là :k= - ( m-1) 2
+ Đường thẳng AB vuông góc với đường thẳng y= x+ 2 khi và chỉ khi k= -1
Hay – ( m-1) 2= -1( vì 2 đường thẳng vuông góc với nhau thì tích hai hệ số góc bằng -1)
Chọn C.
Tìm tất cả các giá trị của tham số m để đường thẳng y=2x+1 cắt đồ thị hàm số y = x + m x - 1
A. - 3 2 < m ≠ - 1 .
B. m ≥ - 3 2
C. - 3 2 ≤ m ≠ - 1 .
D. m > - 3 2
Tập hợp tất cả các giá trị thực của tham số m để đường thẳng y = − 2 x + m cắt đồ thị của hàm số y = x + 1 x − 2 tại hai điểm phân biệt là:
A. 5 − 2 3 ; 5 + 2 3
B. − ∞ ; 5 − 2 6 ∪ 5 + 2 6 ; + ∞
C. − ∞ ; 5 − 2 3 ∪ 5 + 2 3 ; + ∞
D. − ∞ ; 5 − 2 6 ∪ 5 + 2 6 ; + ∞
Tìm tất cả giá trị của tham số thực m để đường thẳng d : y = x + m cắt đồ thị hàm số y = − x + 1 2 x − 1 tại hai điểm phân biệt A, B.
A. m < 0
B. m ∈ ℝ
C. m > 1
D. m = 5
Đáp án là B.
Phương trình hoàng độ giao điểm của
C & d : x + m 2 x − 1 = − x + 1 ; x ≠ 1 2
⇔ 2 x 2 + 2 m x − m − 1 = 0 (1)
C & d cắt nhau tại hai điểm phân biệt khi và chỉ khi phương trình (1) có hai nghiệm phân biệt và khác 1 2 .
Khi đó: m 2 + 2 m + 2 > 0 − 1 2 ≠ 0 ⇔ m ∈ ℝ .
Tìm tất cả các giá trị thực của tham số m để đường thẳng y = m x − m + 1 cắt đồ thị hàm số y = x 3 − 3 x 2 + x + 2 tại ba điểm phân biệt A, B, C sao cho AB=BC.
A. m ∈ − ∞ ; 0 ∪ 4 ; + ∞
B. m ∈ ℝ
C. m ∈ − 5 4 ; + ∞
D. m ∈ − 2 ; + ∞
Biết S = (a,b) là tập hợp tất cả các giá trị của tham số m để đường thẳng y = m cắt đồ thị hàm số y = | \(x^2-4x+3\) | tại bốn điểm phân biệt . Tìm a + b