Cho các số phức z thỏa mãn z + 1 = 2 . Biết rằng tập hợp các điểm biểu diễn các số phức w = 1 + i 8 z + i là một đường tròn. Bán kính r của đường tròn đó là
A. 9
B. 36
C. 6
D. 3
Cho hai số phức w và z thỏa mãn w - 1 + 2 i = z . Biết tập hợp các điểm biểu diễn của số phức z là đường tròn tâm I(-2;3) bán kính r = 3. Tìm tập hợp các điểm biểu diễn của số phức
A. Là một đường thẳng song song trục tung
B. Là một đường thẳng không song song với trục tung
C. Là đường tròn, tọa độ tâm (-3;5) bán kính bằng 3 5
D. Là đường tròn, tọa độ tâm (-1;1) bán kính bằng 3
Ta có : w - 1 + 2 i = z ⇔ w = z + 1 - 2 i . Suy ra quỹ tích các điểm biểu diễn số phức w có được từ quỹ tích các điểm biểu diễn số phức z bằng cách thực hiện phép tịnh tiến theo v → = ( 1 ; - 2 ) . Do đó quỹ tích quỹ tích các điểm biểu diễn số phức w là đường tròn tâm (-1;1) bán kính bằng 3.
Đáp án D
Cho các số phức z thỏa mãn z + 1 = 2 . Biết rằng tập hợp các điểm biểu diễn các số phức w = ( 1 + i 8 ) z + i là một đường tròn. Bán kính r của đường tròn đó là
Cho các số phức z thỏa mãn z - 1 = 2 . Biết rằng tập hợp các điểm biểu diễn các số phức w = 1 + i 3 z + 2 là một đường tròn. Tính bán kính r của đường tròn đó.
A. r=25
B. r=4
C. r=9
D. r=16
Cho số phức z thỏa mãn |z+i| = 1. Biết rằng tập hợp các điểm biểu diễn các số phức w = z - 2i là một đường tròn. Tâm của đường tròn đó là:
A. I(0;-1)
B. I(0;-3)
C. I(0;3)
D. I(0;1)
Đáp án B.
Ta có
Gọi Suy ra z = x + (2+y).i
Suy ra
Theo giả thiết, ta có
Vậy tập hợp các số phức w = z - 2i là đường tròn tâm I(0;-3).
Cho số phức z thỏa mãn z + i = 1 . Biết rằng tập hợp các điểm biểu diễn các số phức w = z − 2 i là một đường tròn. Tâm của đường tròn đó là:
A. I(0;-1)
B. I(0;-3)
C. I(0;3)
D. I(0;1)
Đáp án B.
Vậy tập hợp các số phức w = z - 2i là đường tròn tâm I(0;-3).
Cho số phức z thỏa mãn z - 2 = 2 . Biết rằng tập hợp các điểm biểu diễn các số phức w = ( 1 - i ) z + i là một đường tròn. Tính bán kính r của đường tròn đó
A. 2 2
B. 4
C. 2
D. 2
Cho các số phức z thỏa mãn |z+1|=2. Biết rằng tập hợp các điểm biểu diễn các số phức w = 1 + i 8 z + i là một đường tròn. Bán kính r của đường tròn đó là
A. 9
B. 36
C. 6
D. 3
Ta có
Theo bài ra ta có:
Vậy tập hợp các điểm biểu diễn số phức z là đường tròn tâm I(-1;1; - 8 ) , bán kính r=6
Chọn đáp án C.
Cho số phức z thỏa mãn z + i = 1 . Biết rằng tập hợp các điểm biểu diễn số phức w = 3 + 4 i z + 2 + i là một đường tròn tâm I, điểm I có tọa độ là
A. (6; -2)
B. (6; 2)
C. (2; 1)
D. (-2; -1)
Cho các số phức z thỏa mãn z = 2 . Biết rằng tập hợp các điểm biểu diễn số phức w = 3 − 2 i + 4 − 3 i z là một đường tròn. Tính bán kính r của đường tròn đó
A. r = 5
B. r = 2 5
C. r = 10
D. r = 20