Những câu hỏi liên quan
TZ
Xem chi tiết
H24
Xem chi tiết
BK
21 tháng 8 2023 lúc 18:30

tham khảo:

Bài tập 5 trang 56 Toán 11 tập 2 Chân trời

Gọi I là trung điểm của BD.

Tam giác BCD có IM là đường trung bình nên IM//DC và IM=\(\dfrac{1}{2}\)CD=\(\dfrac{1}{2}\).2a=1

Tam giác ABD có IN là đường trung bình nên IN//AB và IN=\(\dfrac{1}{2}\)AB=\(\dfrac{1}{2}\).2a=1

Ta có: cos\(\widehat{MIN}\)=\(\dfrac{a^2+a^2-\left(a\sqrt{3}\right)^2}{2.a.a}=\dfrac{-1}{2}\)

Nên \(\widehat{MIN}\)=\(120^0\)

Do AB//IN, CD//IM nên góc giữa AB và CD là góc giữa IM và IN là bằng \(120^0\)

Bình luận (0)
HT
Xem chi tiết
TA
Xem chi tiết
PB
Xem chi tiết
CT
29 tháng 5 2018 lúc 15:30

Giải bài tập Toán 11 | Giải Toán lớp 11

Tứ diện đều ABCD nên các mặt của tứ diện là các tam giác đều bằng nhau

Ta có: ∆BAD = ∆CAD (c.c.c)

Suy ra hai đường trung tuyến tương ứng bằng nhau: BN = CN

⇒ ΔBNC cân tại N.

Do NM là đường trung tuyến của tam giác cân BNC nên NM đồng thời là đường cao:

⇒ MN ⊥ BC

Chứng minh tương tự MN ⊥ AD

Bình luận (0)
SP
Xem chi tiết
PH
Xem chi tiết
PB
Xem chi tiết
CT
5 tháng 10 2018 lúc 12:28

Bình luận (0)
PB
Xem chi tiết
CT
29 tháng 5 2019 lúc 4:18

Bình luận (0)