Phát biểu phủ định của các mệnh đề sau và xét tính đúng sai của chúng P: "15 không chia hết cho 3"
Phát biểu phủ định của các mệnh đề sau và xét tính đúng sai của chúng P: "15 không chia hết cho 3"
P ¯ là mệnh đề “15 chia hết cho 3”; P sai, P ¯ đúng
Phát biểu phủ định các mệnh đề sau và xét tính đúng sai của chúng
a) P : "15 không chia hết cho 3"
b) Q : "\(\sqrt{2}>1\)"
a) \(\overline{P}\) là mệnh đề " 15 chia hết cho 3"; P sai, \(\overline{P}\) đúng
b) \(\overline{Q}\) là mệnh đề "\(\sqrt{2}\le1\)"; Q đúng, \(\overline{Q}\) sai
Xét tính đúng sai của mỗi mệnh đề sau và phát biểu mệnh đề phủ định của nó: 1794 chia hết cho 3
Mệnh đề « 1794 chia hết cho 3 » đúng vì 1794 : 3 = 598
Mệnh đề phủ định: "1794 không chia hết cho 3"
Phát biểu phủ định của các mệnh đề sau và xét tính đúng sai của chúng. Q : " 2 > 1 "
Q ¯ là mệnh đề "√2 < 1". Q đúng, Q− sai
Phát biểu mệnh đề phủ định của các mệnh đề sau. Xét tính đúng sai của mỗi mệnh đề và mệnh đề phủ định của nó.
a) Paris là thủ đô của nước Anh
b) 23 là số nguyên tố
c) 2021 chia hết cho 3
d) Phương trình \({x^2} - 3x + 4 = 0\) vô nghiệm.
Mệnh đề phủ định của các mệnh đề trên là:
a) “Paris không phải là thủ đô của nước Anh”
b) “23 không phải là số nguyên tố”
c) “2021 không chia hết cho 3”
d) “Phương trình \({x^2} - 3x + 4 = 0\) có nghiệm”.
+) Xét tính đúng sai:
a) “Paris là thủ đô của nước Anh” là mệnh đề sai.
“Paris không phải là thủ đô của nước Anh” là mệnh đề đúng.
b) “23 là số nguyên tố” là mệnh đề đúng.
“23 không phải là số nguyên tố” là mệnh đề sai.
c) “2021 chia hết cho 3” là mệnh đề sai.
“2021 không chia hết cho 3” là mệnh đề đúng.
d) “Phương trình \({x^2} - 3x + 4 = 0\) vô nghiệm” là mệnh đề đúng.
“Phương trình \({x^2} - 3x + 4 = 0\) có nghiệm” là mệnh đề sai.
Lập mệnh đề phủ định của các mệnh đề sau và xét tính đúng, sai của nó: ∀ n ∈ N: n chia hết cho n
A: “∀ n ∈ N: n chia hết cho n”
A− : “∃ n ∈ N: n không chia hết cho n”.
A− đúng vì với n = 0 thì n không chia hết cho n.
Phát biểu mệnh đề phủ định của mỗi mệnh đề sau và xác định tính đúng sai của mệnh đề phủ định đó.
P: “2 022 chia hết cho 5”
Q: “Bất phương trình 2x + 1 > 0 có nghiệm”.
Mệnh đề phủ định của mệnh đề P là \(\overline P \): “2 022 không chia hết cho 5”
Mệnh đề \(\overline P \) đúng.
Mệnh đề phủ định của mệnh đề Q là \(\overline Q \): “Bất phương trình \(2x + 1 > 0\) vô nghiệm”.
Mệnh đề \(\overline Q \) sai vì bất phương trình \(2x + 1 > 0\) có nghiệm, chẳng hạn: \(x = 0;\;x = 1\).
Xét tính đúng sai của các mệnh đề sau và phát biểu mệnh đề phủ định của chúng.
a) 2020 chia hết cho 3
b) \(\pi < 3,15\)
c) Nước ta hiện nay có 5 thành phố trực thuộc trung ương.
d) Tam giác có hai góc bằng \({45^o}\) là tam giác vuông cân.
a) Mệnh đề “2020 chia hết cho 3” sai.
Mệnh đề phủ định của mệnh đề này là: “2020 không chia hết cho 3”
b) Mệnh đề “\(\pi < 3,15\)” đúng vì \(\pi \approx 3,141592654\)
Mệnh đề phủ định của mệnh đề này là: “\(\pi \ge 3,15\)”
c) Mệnh đề “Nước ta hiện nay có 5 thành phố trực thuộc trung ương” đúng (gồm Hà Nội, Đà Nẵng, Hải Phòng, Hồ Chí Minh và Cần Thơ)
Mệnh đề phủ định của mệnh đề này là: “Nước ta hiện nay không phải có 5 thành phố trực thuộc trung ương”
d) Mệnh đề “Tam giác có hai góc bằng \({45^o}\) là tam giác vuông cân” đúng.
Mệnh đề phủ định của mệnh đề này là: “Tam giác có hai góc bằng \({45^o}\) không phải là tam giác vuông cân”
Xét tính đúng sai của mỗi mệnh đề sau và phát biểu mệnh đề phủ định của nó: π < 3,15
Mệnh đề π < 3, 15 đúng vì π = 3,141592654…
Mệnh đề phủ định: "π ≥ 3, 15"