Có bao nhiêu số phức z thỏa mãn z - 2 i = 5 và tập điểm biểu diễn của số phức z trong mặt phẳng tọa độ là đường thẳng ∆ : 3x-y+1=0?
A. 2
B. 1
C. 0
D. Vô số
Cho số phức z thỏa mãn z = 2 Biết rằng tập hợp các điểm biểu diễn số phức w=3-2i+(2-i)z là một đường tròn. Bán kính R của đường tròn đó bằng bao nhiêu?
Cho số phức z thỏa mãn z = 2 . Biết rằng tập hợp các điểm biểu diễn số phức w = 3 - 2 i + ( 2 - i ) z là một đường tròn. Bán kính R của đường tròn đó bằng bao nhiêu?
A. 7
B. 20
C. 2 5
D. 7
Cho hai số phức w và z thỏa mãn w - 1 + 2 i = z . Biết tập hợp các điểm biểu diễn của số phức z là đường tròn tâm I(-2;3) bán kính r = 3. Tìm tập hợp các điểm biểu diễn của số phức
A. Là một đường thẳng song song trục tung
B. Là một đường thẳng không song song với trục tung
C. Là đường tròn, tọa độ tâm (-3;5) bán kính bằng 3 5
D. Là đường tròn, tọa độ tâm (-1;1) bán kính bằng 3
Ta có : w - 1 + 2 i = z ⇔ w = z + 1 - 2 i . Suy ra quỹ tích các điểm biểu diễn số phức w có được từ quỹ tích các điểm biểu diễn số phức z bằng cách thực hiện phép tịnh tiến theo v → = ( 1 ; - 2 ) . Do đó quỹ tích quỹ tích các điểm biểu diễn số phức w là đường tròn tâm (-1;1) bán kính bằng 3.
Đáp án D
Biết số phức z thỏa mãn: (2-z) i + z ¯ ∈ ℝ thì tập hợp điểm biểu diễn số phức z là:
A. Một đường tròn.
B. Một Parabol.
C. Một Elip.
D. Một đường thẳng.
Xét các số phức z thỏa mãn z - 1 + i ( z + z ¯ ) i + 1 là số thực. Tập hợp các điểm biểu diễn của số phức w = z 2 là parabol có đỉnh
Tập hợp điểm biểu diễn hình học của số phức w = 1 − i z với z là số phức thỏa mãn z + i = 2 là đường tròn có phương trình
A. x 2 + y 2 = 2 .
B. x 2 + y 2 = 2 2 .
C. x 2 + y 2 = 4 .
D. x 2 + y 2 = 2 .
Đáp án C
w = 1 − i z ⇒ i z = 1 − w ⇒ z = 1 − w i = − i + i w
z + i = 2 ⇔ − i + i w + i = 2 ⇔ i w = 2 ⇔ i w = 2 ⇔ w = 2
Vậy tập hợp các số phức w là đường tròn tâm O 0 ; 0 và bán kính R = 2 .
Cho số phức z thỏa mãn 5 z + i = 5 - i z biết rằng tập hợp điểm biểu diễn cho số phức w thỏa mãn w ( 1 - i ) = ( 6 - 8 i ) z + 3 i + 2 là một đường tròn. Xác định tọa độ tâm I của đường tròn đó.
A. I(-1;5)
B. I (1; -5)
C. I = ( - 1 2 ; 5 2 )
D. I = ( 1 2 ; - 5 2 )
Cho các số phức z thỏa mãn z = 7 . Tập hợp các điểm biểu diễn các số phức w = ( 3 + 4 i ) z ¯ + i + 5 là một đường tròn có bán kính bằng
A. 19
B. 20
C. 35
D. 4
Xét các số phức z thỏa mãn z - 1 + i z + z + i + 1 là số thực. Tập hợp các điểm biểu diễn của số phức w = z 2 là parabol có đỉnh
A. I 1 4 ; 3 4
B. I - 1 2 ; 1 2
C. I 1 2 ; 3 2
D. I - 1 4 ; 1 4