Tập xác định của hàm số y = ln ( - x 2 + 3 x - 2 ) là
A. ( - ∞ ; 1 ] ∪ [ 2 ; + ∞ )
B. [1; 2]
C. ( - ∞ ; 1 ) ∪ ( 2 ; + ∞ )
D. ( 1 ; 2 )
Tập xác định của hàm số y = [ ln ( x - 2 ) ] π là
A. R
B. ( 3 ; + ∞ )
C. ( 0 ; + ∞ )
D. ( 2 ; + ∞ )
Tập xác định D của hàm số y = ln x + 2 là
A. D = [ 2 ; + ∞ )
B. D = [ e 2 ; + ∞ )
C. D = [ 1 e 2 ; + ∞ )
D. D = [ ln 2 ; + ∞ )
Chọn C.
Phương pháp: Viết điều kiện xác định và giải điều kiện đó.
Tập xác định của hàm số y = ln ( x - 2 ) π là
A . ℝ
B . ( 3 ; + ∞ )
C . ( 0 ; + ∞ )
D . ( 2 ; + ∞ )
Tập xác định D của hàm số y = [ l n ( x - 2 ) ] π là
Tập xác định của hàm số y = l n ( x - 2 - x 2 - 3 x - 10 ) là
A. 5 ≤ x ≤ 14
B. 2 < x < 14
C. 2 ≤ x < 14
D. 5 ≤ x < 14
Tìm tập xác định của các hàm số sau:
a) \(y = \sqrt {{4^x} - {2^{x + 1}}} \)
b) \(y = \ln (1 - \ln x)\).
\(a,4^x-2^{x+1}\ge0\\ \Leftrightarrow2^{x+1}\le2^{2x}\\ \Leftrightarrow x+1\le2x\\ \Leftrightarrow x\ge1\)
Tập xác định của hàm số là D = \([1;+\infty)\)
\(b,\left\{{}\begin{matrix}x>0\\1-ln\left(x\right)>0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x>0\\ln\left(x\right)< 1\end{matrix}\right.\\ \Leftrightarrow0< x< e\)
Tập xác định của hàm số là \(\left(0;e\right)\)
Tìm tập xác định của hàm số y = ln ( 1 - x ) 2 .
A . ( 1 ; + ∞ )
B . ( - ∞ ; 1 )
C . ℝ
D . ℝ \ { 1 }
Chọn D
Hàm số xác định khi và chỉ khi :
Tìm tập xác định của hàm số y = ln ( 1 - x ) 2
A. ( 1 ; + ∞ )
B. ( - ∞ ; 1 )
C. R
D. R \ {1}
Tìm tập xác định của các hàm số sau:
a) \(y = \log \left| {x + 3} \right|;\)
b) \(y = \ln \left( {4 - {x^2}} \right).\)
a, \(y=log\left|x+3\right|\) có nghĩa khi \(\left|x+3\right|>0\)
Mà \(\left|x+3\right|\ge0\forall x\in R\)
\(\Rightarrow\) \(\left|x+3\right|>0\) khi \(x\ne-3\)
Vậy tập xác định của hàm số là D = R \ {-3}.
b, \(y=ln\left(4-x^2\right)\) có nghĩa khi \(4-x^2>0\)
\(\Rightarrow x^2< 4\\ \Leftrightarrow-2< x< 2\)
Vậy tập xác định của hàm số là D = (-2;2).
Tìm tập xác định D của hàm số y = l n ( 1 - x ) 2