Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = x 2 - 1 x - 1 bằng
A. 2.
B. 1.
C. 4.
D. 3.
Xét các mệnh đề sau
(1). Đồ thị hàm số y = 1 2 x - 3 có hai đường tiệm cận đứng và một đường tiệm cận ngang
(2). Đồ thị hàm số y = x + x 2 + x + 1 x có hai đường tiệm cận ngang và một đường tiệm cận đứng
(3). Đồ thị hàm số y = x - 2 x - 1 x 2 - 1 có một đường tiệm cận ngang và hai đường tiệm cận đứng.
Số mệnh đề đúng là:
A. 0
B. 3
C. 2
D. 1
Đáp án D
Đồ thị hàm số y = 1 2 x - 3 có hai đường tiệm cận đứng và một đường tiệm cận ngang
Đồ thị hàm số y = x + x 2 + x + 1 x có 1 tiệm cận đứng là x = 0
Mặt khác lim x → + ∞ y = x + x 2 + x + 1 x = lim x → + ∞ x + x + 1 x + 1 x 2 x = 0 nên đồ thị hàm số có 2 tiệm cận ngang
Xét hàm số y = x - 2 x - 1 x 2 - 1 = x - 2 x - 1 x + 2 x - 1 x 2 - 1 = x - 1 x + 2 x - 1 x - 1 x > 1 2 suy ra đồ thị không có tiệm cận đứng. Do đó có 1 mệnh đề đúng
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \(\dfrac{x+\sqrt{x^2+1}}{x+1}\)
Lời giải:
TXĐ: \((-\infty; -1)\cup (-1;+\infty)\)
\(\lim\limits_{x\to +\infty}y=\lim\limits_{x\to +\infty}\frac{1+\sqrt{1+\frac{1}{x}}}{1+\frac{1}{x}}=\frac{1+1}{1}=2\)
\(\lim\limits_{x\to -\infty}y=\lim\limits_{x\to -\infty}\frac{-1+\sqrt{1+\frac{1}{x^2}}}{-1+\frac{1}{-x}}=\frac{-1+1}{-1}=0\)
Do đó ĐTHS có 2 TCN là $y=0$ và $y=2$
\(\lim\limits_{x\to -1-}y=\lim\limits_{x\to -1-}\frac{x+\sqrt{x^2+1}}{x+1}=-\infty\) do \(\lim\limits_{x\to -1-}(x+\sqrt{x^2+1})=\sqrt{2}-1>0\) và \(\lim\limits_{x\to -1-}\frac{1}{x+1}=-\infty\)
Tương tự \(\lim\limits_{x\to -1+}y=+\infty\) nên $x=-1$ là TCĐ của đths
Vậy có tổng 3 TCN và TCĐ
Tổng số các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = x + 2 16 − x 4 là
A. 3.
B. 0.
C. 2.
D. 1.
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = x + 3 x - 1 x 2 - 1 là
A. 1.
B. 2.
C. 3
D. 4.
Cho hàm số y = f(x) có bảng biến thiên như sau
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = 2 3 f x - 2
A. 6.
B. 5.
C. 4.
D. 3.
Tổng số đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số y = sin x 2 x 3 là
A. 0.
B. 1.
C. 2.
D. 3.
Cho hàm số y=f(x) có bảng biến thiên như sau
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = 1 f x + 2 là
A. 2
B. 4
C. 3
D. 5
đường tiệm cận đứng và ngang.
Chọn đáp án C.
Tổng số đường tiệm cận ngang và đường tiệm cận đứng của đồ thị hàm số y = 2 x 2 - 1 + 1 x là
A. 1.
B. 0.
C. 2.
D. 3.
ĐKXĐ:
Do đó đồ thị hàm số không có TCĐ.
Ta có:
Vậy đồ thị hàm số có 2 TNN là y = ± 2
Chọn C.
Chú ý: HS có thể sử dụng chức năng CALC trên MTCT để tính giới hạn của hàm số.
Hàm số y = f(x) có bảng biến thiên dưới đây
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = f(x) là
A. 2.
B. 4.
C. 1.
D. 3.
Hàm số y = f ( x ) có bảng biến thiên dưới đây
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = f ( x ) là
A. 2
B. 4
C. 1
D. 3