Những câu hỏi liên quan
LD
Xem chi tiết
BB
Xem chi tiết
UN
23 tháng 8 2016 lúc 18:06

Vì x<y nên a<b.Ta có x=a/m=2a/2m,y=b/m=2b/2m 
Chọn số z=2a+1/2m .Do 2a<2a+1=>x<z(1) 
Do a<b nên a+1 nên a+1 nhỏ hơn hoặc bằng b=>2a+2<=2b 
Ta có 2a+1<2a+2<=2b nên 2a+1<2b. Do đó z<y (2) 
Từ 1 và 2 suy ra x<z<y

Bình luận (0)
NT
Xem chi tiết
PL
Xem chi tiết
NN
4 tháng 9 2017 lúc 20:56

a) /x-2/ nhỏ hơn hoặc bằng 2

vì /a/ \(\ge\)0

mà /x-2/\(\le\)2

\(\Rightarrow\)/x-2/={0;1;2}

Nếu /x-2/=0

   x-2 =0

\(\Rightarrow\)x=2

Nếu /x-2/=1

   x-2  =1

\(\Rightarrow\)x=3

Nếu /x-2/=2

   x-2 =2

\(\Rightarrow\)x=4

Vì x\(\in\)Z nên x={2;3;4}

b) /x-3/ nhỏ hơn hoặc bằng 0

Vì /a/\(\ge\)0

mà /x-3/\(\le\)0

nên /x-3/=0

        x-3 =0

    \(\Rightarrow\)x=3

Bình luận (0)
B1
4 tháng 9 2017 lúc 20:43

1) Giải theo cách lớp 8 nhé: 
Áp dụng BĐT (a + b)² >= 4ab (với a,b là các số không âm). Dấu "=" xảy ra khi a = b. C/m đơn giản thôi, bạn chuyển vế đưa về hằng đẳng thức đúng. 
(x + y)² >= 4xy 
(y + z)² >= 4yz 
(x + z)² >= 4xz 
Nhân theo vế 3 BĐT trên có: (x + y)²(y + z)²(x + z)² >= 64x²y²z² 
=> (x + y)(y + z)(z + x) >= 8xyz (vì x,y,z >= 0) 
2) ĐK để các phân thức có nghĩa: a + b; b + c; c +a khác 0. 
Ta có: a²/(a +b) + b²/(b + c) + c²/(c + a) = b²/(a +b) + c²/(b + c) + a²/(c + a) (*) 
<=> a²/(a +b) + b²/(b + c) + c²/(c + a) - b²/(a +b) - c²/(b + c) - a²/(c + a) = 0 
<=> (a² - b²)/(a + b) + (b² - c²)/(b + c) + (c² - a²)/(c + a) = 0 
<=> (a - b)(a + b)/(a + b) + (b - c)(b + c)/(b + c) + (c - a)(c + a)/(c + a) = 0 
<=> a - b + b - c + c - a = 0 
<=> 0 = 0 (1) 

Bình luận (0)
NP
Xem chi tiết
HN
Xem chi tiết
LC
Xem chi tiết
TL
Xem chi tiết
H24
Xem chi tiết