S=2mũ1+2mũ2+2mũ3+....+2mũ60. Chứng tỏ S chia hết cho 3
bài 1:
chứng tỏ rằng :
a, 3mũ2009 - 11mũ50 chia hết cho 2
b,2 mũ 4n+1 + 3 chia het cho 5
bài 3, chứng tỏ rằng A= 2+2mũ2+2mũ3+...+2mũ60 chia hết cho cả 2 và 5
Ý bạn là:
Cho \(S=2+2^2+2^3+...+2^{95}+2^{96}.\)Chứng tỏ \(S⋮24\)
Nếu thế thì mình giải cho
Ý bn là:
Cho \(S=2+2^2+2^3+...+2^{95}+2^{96}.\)Chứng tỏ \(S⋮24\)
Nếu vậy thì mình giải cho
Ta có: \(S=2+2^2+\left(2^3+2^4\right)+...+\left(2^{95}+2^{96}\right)\)
\(\Leftrightarrow S=2+2^2+24+...+2^{92}.24\)
\(\Leftrightarrow S=6+24.\left(1+2^2+...+2^{92}\right)\)
Vì \(24.\left(1+2^2+...+2^{92}\right)⋮24\)mà \(6⋮̸24\)
\(\Rightarrow S⋮̸̸24\)
Chứng tỏ rằng 2+2mũ2+2mũ3+2mũ4+...+2mũ59+2mũ60
A=2mũ1+2mũ2+2mũ3+……+2mũ2010chia hết cho 3 và 7
Ta có : A=2+22+23+...+22010
=(2+22)+(23+24)+...+(22009+22010)
=2(1+2)+23(1+2)+...+22009(1+2)
=2.3+23.3+...+22009.3 chia hết cho 3 (1)
Ta có : A=2+22+23+...+22010
=(2+22+23)+(24+25+26)+...+(22008+22009+22010)
=2(1+2+22)+24(1+2+22)+...+22008(1+2+22)
=2.7+24.7+...+22008.7 chia hết cho 7 (2)
Từ (1) và (2)
=> A chia hết cho cả 3 và 7
Vậy A chia hết cho cả 3 và 7.
A=\(2^1\)+\(2^2\)+\(2^3\)+...+\(2^{2010}\)
=(\(2^1\)+\(2^2\)+\(2^3\))+...+(\(2^{2008}\) +\(2^{2009}\)+\(2^{2010}\))
=2(1+2+\(2^2\))+\(2^4\)(1+2+\(2^2\))+...+\(2^{2008}\)(1+2+\(2^2\))
=2.7+\(2^4\).7+...+\(2^{2008}\).7
=7(2+\(2^4\)+...+\(2^{2008}\)) chia hết cho 7 (đ.p.c.m)
+)A=\(2^1\)+\(2^2\)+\(2^3\)+...+\(2^{2010}\)
=(\(2^1\)+\(2^2\))+...+(\(2^{2009}+2^{2010}\))=2(1+2)+\(2^3\)(1+2)+...+\(2^{2009}\)(1+2)=3(2+\(2^3+2^{2009}\)) chia hết cho 3 (đ.p.c.m)
A=2+2mũ2+2mũ3+...+2mũ59+2mũ60
CMR A chia hết cho 7
vì dấu mũ mình không biết viết nên phải viết bằng chũ và chứng minh rằng=CMR
Vì a có 60 lũy thừa ( mà 60 chia hết cho 3 ) nên ta có thể chia A thành các nhóm gồm mỗi nhóm 3 lũy thừa như sau :
A = \(2+2^2+2^3+...+2^{59}+2^{60}\)
A = \(\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
A = \(2.\left(1+2+2^2\right)+...+2^{58}.\left(1+2+2^2\right)\)
A = \(2.7+...+2^{58}.7\)
A = \(7.\left(2+...+2^{58}\right)\)
Vậy A \(⋮\)7
Ủng hộ mik nhá ^_^"
A=2+22+23+..+259+260
A=2+22+23+...+2*257*22*257+23*257
A=(2+22+23)+..+(2*22*23)*(257+257+257)
A=14+....+14*(257+257+257)
Vì 14 chia hết cho 7
=> 14+...+14*(257+257+257)
do đó : A chia hết cho 7
Chứng tỏ A chia hết cho 6 với A=2+2mũ2+2mũ3+2mũ4+...+2mũ100
A=2+22+23+24+...+2100
A=(2+22)+(23+24)+...+(299+2100)
A=2(1+2)+222(1+2)...+2982(1+2)
A=3.2(1+22+...+298)
A=6(2+22+...+299) chia hết 6
a) 2mũ1 nhân 5mũ2 nhân 17
b) 2mũ2 + 2mũ3 + 2mũ4
c) 2mũ5 nhân 3 + 2mũ4 : 8 + 50 : 5mũ2
d) 11mũ2 - 10mũ2 - 3mũ2
e) 1mũ3 + 2mũ3 + 3mũ3 + 4mũ3 + 5mũ3
a, 21.52.17 = 2.25.17 = 50.17 = 850
b, 22 + 23 + 24 = 4 + 8 + 16 = 28
c, 25.3 + 24:8 + 50: 52
= 32.3 + 16:8 + 50:25
=96 + 2 + 2
= 100
d, 112 - 102 - 32
= 121 - 100 - 9
= 21 - 9
= 12
e, 13 + 23 + 33 + 43 + 53
= ( 1+ 2+3+4+5)2
= 152
= 225
(2^2 + 2) + (2^3 + 2^4) +...........+(2^11 + 1)
= 2. (2+1) + 2^3. (2+1) + ........ + 2^9.(2+1) +(2^11+1)
= 2. 3 + 2^3. 3 + ..... + 2^9. 3 + (2^11 +1)
Vì 3 chia hết cho 3
=> A chia hết cho 3
chứng tỏ rằng
a). A = 2+2mũ2+ 2mũ3+ 2mũ4 + ...+ 2mũ9 + 2mũ10 chia hết cho 3
b) A= 2mũ2+ 2mũ4+ 2mũ6+ 2mũ8+ ...+ 2mũ18+ 2mũ20 chia hết cho 5
c) A = 7+ 7mũ2+ 7mũ3+ 7mũ4+ ...+ 7mũ9+ 7mũ10 chia hết cho 8
d) A = 4+ 4mũ2+ 4mũ3+ 4mũ4 + ...+ 4mũ9+ 4mũ10 chia hết cho 5
a) Ta có : A=2+22+23+...+210
=(2+22)+(23+24)+...+(29+210)
=2(1+2)+23(1+2)+...+29(1+2)
=2.3+23.3+...+29.3
Vì 3\(⋮\)3 nên 2.3+23.3+...+29.3\(⋮\)3
hay A\(⋮\)3
Vậy A\(⋮\)3.
b) Ta có : A=22+24+26+...+220
=(22+24)+(26+27)+...+(218+220)
=22(1+22)+26(1+22)+...+218(1+22)
=22.5+26.5+...+218.5
Vì 5\(⋮\)5 nên 22.5+26.5+...+218.5\(⋮\)5
hay A\(⋮\)5
Vậy A\(⋮\)5.
c) Ta có : A=7+72+73+...+710
=(7+72)+(73+74)+...+(79+710)
=7(1+7)+73(1+7)+...+79(1+7)
=7.8+73.8+...+79.8
Mà 8 chia hết cho 8 nên 7.8+73.8+...+79.8 chia hết cho 8
hay A chia hết cho 8
Vậy A chia hết cho 8.