Chứng minh A không chia hết cho 9, biết:
A = ( a-1).(a+2)+12 không chia hết cho 9
Bài 1 : Chứng minh: ( Trình bày rõ => 2 likes )
a, ( a + 9 ) . ( a + 2 ) + 21 không chia hết cho 49
b, (a - 1 ) . ( a + 2 ) + 12 không chia hết cho 9
a,Gỉa sử :(a+9).(a+2)+21 chia hết cho 49
=>(a+9).(a+2) +21chia hết cho 7 mà 21 chia hết cho7
=>(a+2+7).(a+2) chia hết cho 7
=>(a+2)2+7.(a+2) chia hết cho 7 mà 7.(a+2) chia hết cho 7
=>(a+2)2 chia hết cho 7 =>(a+2)2 chia hết cho 49;a+2 chia hết cho 7
Khi đó:(a+2)2+7.(a+2) +21 chia hết cho 49 mà (a+2)2+7.(a+2) chia hết cho 49(vì a+2 chia hết cho 7)
=>21 chia hết cho 49 mà 21 không chia hết cho 49
=>(a+2)2+7.(a+2) +21 không chia hết cho 49
Vậy (a+9).(a+2) +21 không chia hết cho 49
b,Gỉa sử:(a-1).(a+2) +12 chia hết cho 9
=>(a-1).(a+2) +12 chia hết cho 3 mà 12 chia hết cho 3
=>(a-1).(a+2) chia hết cho 3
=>(a-1).(a-1+3) chia hết cho 3
=>(a-1)2+3.(a-1) chia hết cho 3 mà 3.(a-1)chia hết cho 3
=>(a-1)2 chia hết cho 3=>(a-1) chia hết cho 3
Khi đó :(a-1)2+3(a-1)+12 chia hết cho 9 mà (a-1)2 và 3(a-1) chia hết cho 9(vì a-1 chia hết cho 3)
=>12 chia hết cho 9 mà 12 không chia hết cho 9
=>(a-1)2+3.(a-1) +12 không chia hết cho 9
Vậy (a-1).(a+2) +12 không chia hết cho 9
=>
=>
Ta thấy: a + 9 - a - 2 = 7 chia hết cho 7 => a + 9 và a + 2 có cùng số dư khi chia cho 7
Xét 2 trường hợp xảy ra.
TH1: a + 2 và a + 9 đều chia hết cho 7
=> (a + 2)(a + 9) chia hết cho 49
Mà 21 không chia hết cho 49
=> (a + 2)(a + 9) + 21 không chia hết cho 49
TH2: a + 2 và a + 9 đều không chia hết cho 7
=> (a + 2)(a + 9) không chia hết cho 7, mà 21 chia hết cho 7
=>(a + 2)(a + 9) + 21 không chia hết cho 7 => Không chia hết cho 49
Từ 2 TH => (a + 9) . (a + 2) + 21 không chia hết cho 49 với mọi n
Mình đã làm dc ý a rồi , còn ý b làm thế nào z ?
Bài 1 : Chứng minh rằng với mọi số nguyên a ta có : ( Trình bày rõ => like )
a, ( a - 1 ) . ( a + 2 ) + 12 không chia hết cho 9
b, ( a + 9 ) . ( a + 2 ) + 21 không chia hết cho 49
1a)Tacó:12 ko chia hết cho 9
=>(a-1).(a+2) ko chia hết cho 9
=>(a+1).(a+2)+12 ko chia hết cho 9
Câu b giải giống như câu a nhé!!!!!!!!!!!!!!!!
1. Chứng minh rằng
a, [(a-1)(a+2)+12] không chia hết cho 9
b, [(a+2)(a+9)+21] không chia hết cho 49
2. Tìm n thuộc Z
(n3-3n2+10) chia hết cho (n+1)
1.
a, Cho A = 963 + 2493 + 351 + x với x thuộc N . Tìm điều kiện của x để A chia hết cho 9 , để A không chia hết cho 9
b,Cho B = 10 + 25 +x + 45 với x thuộc N . Tìm điều kiện để B chia hết cho 5 , để B không chia hết cho 5
2. Khi chia số tự nhiên a cho 36 thì ta được số dư là 12 , hỏi số đó có chia hết cho 4 không , có chia hết cho 9 không .
3.a, Từ 1 đến 1000 có bao nhiêu số chia hết cho 5
b,Tổng 1018 + 8 có chia hết cho 9 và 2 hay không
c,Tổng 102010 + 14 có chia hết cho 3 và 2 hay không
d, Chứng minh ab-ba chia hết cho 9 với a > b
4.Tìm x thuộc N
x + 16 chia hết cho x +1
4. x + 16 chia hết cho x + 1
Ta có
x + 16 = ( x + 1 ) + 15
Mà x + 1 chia hết cho 1
=> 15 phải chia hết cho x + 1
=> x + 1 thuộc Ư(15)
Ư(15) = { 1 ; 15 ; 3 ; 5 }
TH1 : x + 1 = 1 => x = 1 - 1 = 0
TH2 : x + 1 = 15 => x = 15 - 1 = 14
TH3 : x + 1 = 3 => x = 3 - 1 = 2
TH4 : x + 1 = 5 => x = 5 - 1 = 4
Vậy x = 0 ; 14 ; 4 ; 2
1
a . Để A chia hết cho 9 thì các số hạng của nó phải chia hết cho 9
Mà 963 , 2439 , 361 chia hết cho 9
=> x cũng phải chia hết cho 9
Vậy điều kiện để A chia hết cho 9 là x chia hết cho 9
Và ngược lại để A ko chia hết cho 9 thì x không chia hết cho 9
b. Tương tự phần trên nha
A = 963 + 2463 + 351 + x với x thuộc số tự nhiên
* x chia hết cho 4
Để x chia hết cho 4 thì các số hạng trong tổng phải chia hết cho x mà
963 ; 2493 ; 351 đều chia hết cho 9
Vậy x phải là một số tự nhiên chia hết cho 9
* x không chia hết cho 9 thì một trong những số hạng trên phải có một số không chia hết cho 9
Mà cả 3 số hạng đã biết đều chia hết cho 9 nên x sẽ không chia hết cho 9.
b , tương tự , tự làm cho mình nha !
còn bài 2 mình đã làm giúp cho bạn Ho Chin thiểu rồi cậu tự vào tham khảo nha !
3
Ta có dãy số để biểu hiện những số đã chia hết cho 5 từ 1 đến 1000 :
5 ; 10 ; 15 ; 20; 25;....1000
SSH của dãy số trên là
( 1000 - 5 ) :5 +1 = 200 số hạng
tổng của 10^18 + 8 =( 10 +8)^18
= 18 ^ 18
Trong đó 18 chia hết cho 2 và 3 nên tổng 10^18 chia hết cho 2 và 3
c cứ tương tự
d;
Ta có ab-ba ( với a >b )
vd : 21 -12 = 9
vậy ab-ba chia hết cho 9
vì x + 16 chia hết cho x + 1 nên
x + 16 = (x + 1 ) + 15 ( x chia hết cho 1 )
suy ra 15 phải chia hết cho x+1 ( 15 là B của x + 1)
Và ngược lại x + 1 là Ư(15)
Ta có Ư ( 15 ) = { 1 ; 3 ; 5; 15 }
do x+1 nên ta biết { 1 - 1 ; 3 - 1 ; 5 - 1 ; 15 - 1 }
Sẽ có kết quả lần lượt sau : 0 ; 2 ; 4 ; 14
Vậy x thuộc { 0 ; 2 ; 4 ; 14 }
Chứng minh rằng với mọi n thuộc N thì :
a,n^2 + n + 2 không chia hết cho 15
b, ( n -1 ) . ( n +2 ) + 12 không chia hết cho 9
c, 2010^n -1 không chia hết cho 1000^n - 1
chứng minh rằng với mọi số nguyên a ta có
a/ (2a+1)(a+2)+12 không chia hết cho 9
b/ (a+9)(a+2)+21 không chia hết cho 49
giải chi tiết và nhanh hộ mình nha !
a) tổng 10615+8 có chia hết cho 2 và 9 không
b)tổng 10^2010+14 có chia hết cho3 và 2 không
c)hiệu 10^2010-4 có chia hết cho 3 không
d)chứng minh rằng aaa luôn chia hết cho 37
e)chứng minh aaabbb luôn chia hết cho 37
f)chứng tỏ rằng ab(a+b)chia hết cho 2(a;b thuộc N)
m)chứng minh ab+ba luôn chia hết cho 11
n)chứng minh ab-ba luôn chia hết cho 9 với a>b
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
b, B = 102010 + 14
Xét tổng các chữ có trong B là : 1 + 0 x 2010 + 4 = 6 ⋮ 3 ⇒ B ⋮ 3
B = 102010 + 14 = \(\overline{..0}\) + 4 = \(\overline{..4}\) ⋮ 2 vậy B ⋮ 2
1.Tổng 102010+8 có chia hết cho 9 không?
2. Chứng minh rằng ab(a+b) chia hết cho 2.
3. Cho A= 963+2493+351+x với x thuộc N. Tìm điều kiện của x để A chia hết cho 9 , A không chia hết cho 9
1 Ta có
10^2010=10000...0000(2010 số 0)+8
=100000...0000(2009 số 0)8
=(1+0+8)=9 mà 9 chi hết cho 9
suy ra 10^2010+8 chia hết cho 9
2.Nếu số a và số b cùng chẵn thì a+b chẵn suy ra ab(a+b) Chia hết cho 2
Nếu hai số cùng lẻ suy ra a+b chẵn suy ra ab(a+b) Chia hết cho 2
Nếu a chẵn ,b lẻ suy ra ab chia hết cho 2 suy ra ab(a+b) chia hết cho 2
Nếu a lẻ ,b chẵn thì ab chia hết cho 2 suy ra ab(a+b) chia hết cho 2
Vậy ab(a+b) chia hết cho 2
Chứng tỏ rằng:
a)(n-1).(n+2)+12 không chia hết cho 9
b)(n+2).(n+9)+21 không chia hết cho 49