Tìm số nguyên n biết rằng 2n - 1 là ước của 12 và 15 là bội của n
Tìm số nguyên n, biết rằng
a) n - 3 là ước của 7
b) 2n - 1 là ước của 12 và 15 là bội của n.
tìm số nguyên n biết 2n-1 là ước của 12 và 15 là bội của n
toa méo biết
giúp đi mà
Tìm số nguyên n,biết:
2n-1 là ước của 12 và 15 là bội của n
Tìm số nguyên n biết: a) – 5 là bội của n + 1
b) n là ước của 3n + 6
c) 2n + 5 là bội của n + 1
d) 3n + 1 chia hết cho n – 3
Tìm số nguyên n sao cho
a) n – 1 là bội của n + 5 và n + 5 là bội của n – 1
b) 2n – 1 là ước của 3n + 2
Tìm số nguyên n, để:
a) 4n-5 chia hết cho n
b) -11 là bội của n-1
c) 2n-1 là ước của 3n+2
d) n-1 là ước của 12
a, Ta có: 4n-5⋮⋮n
⇒n∈Ư(5)={±1;±5}
b, Ta có: -11⋮⋮n-1
⇒n-1∈Ư(11)={±1;±11}
n-1 1 -1 11 -11
Đúng thì t.i.c.k đúng cho mình nhé,còn sai thì đừng t.i.c.k sai nhé
n 2 0 12 -10
Vậy n∈{2;0;12;-10}
c, Ta có: 3n+2⋮⋮2n-1
⇒2(3n+2)⋮⋮2n-1
⇒6n+4⋮⋮2n-1
⇒3(2n-1)+7⋮⋮2n-1
⇒2n-1∈Ư(7)={±1;±7}
2n-1 1 -1 7 -7
2n 2 0 8 -6
n 1 0 4 -3
Vậy n∈{1;0;4;-3}
Tìm số nguyên n sao cho:
s.2n-1 là ước của 3n-2
b.n-4 là bội của n+5 và n+5 là ước của n-1
a,Tìm các số nguyên x sao cho 4x+3 chia hết cho x+2
b, Tìm số nguyên x,y biết 3xy-2x-3y=5
c, Tìm các số nguyên n biết : n-2 là ước của 2n+1
d, Cho x,y là các số nguyên . Chứng tỏ rằng 6x+11y là bội của 31 khi và chỉ khi x+7y là bội của 31
( Mình đang cần rất gấp , bạn nào xong trước mình sẽ tick! )
Bài 6. Tìm số nguyên n biết:
a) – 13 là bội của n – 2
b) 2n - 1 là ước của 3n + 2
c) n2 + 2n - 7 chia hết cho n + 2
d) n2+3n−5 là bội của n−2.
a) – 13 là bội của n – 2
=>n−2∈Ư (−13)={1; −1;13; −13}
=> n∈{3;1;15; −11}
Vậy n∈{3;1;15; −11}.
b) 3n + 2 ⋮2n−1 => 2(3n + 2) ⋮2n−1 => 6n + 4 ⋮2n−1 (1)
Mà 2n−1⋮2n−1 => 3(2n−1) ⋮2n−1 => 6n – 3 ⋮2n−1 (2)
Từ (1) và (2) => (6n + 4) – (6n – 3) ⋮2n−1
=> 7 ⋮2n−1
=> 2n−1 ∈Ư(7)={1; −1;7; −7}
=>2n ∈{2;0;8; −6}
=>n ∈{1;0;4; −3}
Vậy n ∈{1;0;4; −3}.
c) n2 + 2n – 7 ⋮n+2
=>n(n+2)−7⋮n+2
=>7⋮n+2=>n+2∈{1; −1;7; −7}
=>n∈{−1; −3;5; −9}
Vậy n∈{−1; −3;5; −9}
d) n2+3n−5 là bội của n−2
=> n2+3n−5 ⋮ n−2
=> n2−2n+5n−10+5 ⋮ n−2
=> n(n - 2) + 5(n - 2) + 5 ⋮ n−2
=> 5 ⋮ n−2=>n−2∈{1; −1;5; −5}=>n∈{3; 1;7; −3}
Vậy n∈{3; 1;7; −3}.