Những câu hỏi liên quan
TA
Xem chi tiết
PB
Xem chi tiết
CT
24 tháng 1 2017 lúc 16:45

Đáp án đúng : B

 

Bình luận (0)
NT
Xem chi tiết
NT
Xem chi tiết
LQ
Xem chi tiết
NC
10 tháng 6 2020 lúc 18:22

1) \(21x^2+21y^2+z^2\)

\(=18\left(x^2+y^2\right)+z^2+3\left(x^2+y^2\right)\)

\(\ge9\left(x+y\right)^2+z^2+3.2xy\)

\(\ge2.3\left(x+y\right).z+6xy\)

\(=6\left(xy+yz+zx\right)=6.13=78\)

Dấu "=" xảy ra <=> x = y ; 3(x+y) = z; xy + yz + zx= 13 <=> x = y = 1; z= 6

Bình luận (0)
 Khách vãng lai đã xóa
NC
10 tháng 6 2020 lúc 18:31

2) \(x+y+z=3xyz\)

<=> \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=3\)

Đặt: \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)=> ab + bc + ca = 3

Ta cần chứng minh: \(3a^2+b^2+3c^2\ge6\)

Ta có: \(3a^2+b^2+3c^2=\left(a^2+c^2\right)+2\left(a^2+c^2\right)+b^2\)

\(\ge2ac+\left(a+c\right)^2+b^2\ge2ac+2\left(a+c\right).b=2\left(ac+ab+bc\right)=6\)

Vậy: \(\frac{3}{x^2}+\frac{1}{y^2}+\frac{3}{z^2}\ge6\)

Dấu "=" xảy ra <=> a = c = \(\sqrt{\frac{3}{5}}\)\(b=2\sqrt{\frac{3}{5}}\)

khi đó: \(x=z=\sqrt{\frac{5}{3}};y=\sqrt{\frac{5}{3}}\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
H24
Xem chi tiết
H24
20 tháng 5 2018 lúc 16:11

Đề bài mik chép thiếu : Hãy tìm GTLN của S = x + y + z 

Bình luận (0)
NT
Xem chi tiết
HA
Xem chi tiết
CD
16 tháng 6 2019 lúc 14:35

https://diendantoanhoc.net/topic/182493-%C4%91%E1%BB%81-thi-tuy%E1%BB%83n-sinh-v%C3%A0o-l%E1%BB%9Bp-10-%C4%91hsp-h%C3%A0-n%E1%BB%99i-n%C4%83m-2018-v%C3%B2ng-2/

Bình luận (0)
CD
16 tháng 6 2019 lúc 14:37

bài này năm trrong đề thi tuyển sinh vào lớp 10 ĐHSP Hà Nội Năm 2018 (vòng 2) bn có thể tìm đáp án trên mạng để tham khảo

Bình luận (0)
TN
16 tháng 6 2019 lúc 17:58

Sử dụng bất đẳng thức AM-GN, ta có:

\(x^2y^2+1\ge2xy,\) \(y^2z^2+1\ge2yz,\) \(z^2x^2+1\ge2zx\)

Cộng các bất đẳng thức trên lại theo vế, sau đó cộng hai vế của bất đẳng thức thu được với \(x^2+y^2+z^2\), ta được:

\(\left(x+y+z\right)^2\le x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2+3=9\)

Từ đó suy ra: \(Q\le3\)

Mặt khác, dễ thấy dấu bất đẳng thức xảy ra khi \(x=y=z=1\)  nên ta có kết luận \(Max_Q=3\)

Ta sẽ chứng minh \(Q\ge\sqrt{6}\) với dấu đẳng thức xảy ra, chẳng hạn \(x=\sqrt{6},\) \(y=z=0.\) Sử dụng bất đẳng thức AM-GN, ta có:

\(2xy+x^2y^2\le x^2+y^2+x^2y^2\le x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2=6\)

Từ đó suy ra: \(xy\le\sqrt{7}-1< 2\)

Chứng minh tương tự, ta cũng có: 

\(yz< 2,\) \(zx< 2.\)

Do đó, ta có: 

\(Q^2=x^2+y^2+z^2+2xy+2yz+2zx\ge x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2=6\)

Hay: \(Q\ge\sqrt{6}\)

\(\Rightarrow Min_Q=\sqrt{6}\)

Bình luận (0)