tìm 12 số nguyên dương để tổng của chúng bằng tích của chúng
giải giúp tui
nếu đúng tui like cho
tìm 12 số nguyên dương để tổng của chúng bằng tích của chúng
tìm 12 số nguyên dương sao cho tổng của chúng bằng tích của chúng
Ta có: 12.0 = 0 + 0 + ..... + 0 (có 12 số 0) = 0
Ta lại có: 012 = 0 x 0 x 0 x .... x 0 (có 12 số 0) = 0
Ta thấy 2 đáp án đều bằng nhau, vậy số cần tìm là 0
0 x 0 luôn luôn bằng 0 dù cộng bao nhiêu đi nữa
0 + 0 luôn luôn bằng 0 dù nhân bao nhiêu đi nữa
Tìm 3 số nguyên dương, sao cho tổng các nghịch đảo của chúng bằng 2
( Ai giúp mình làm nhanh, đúng và chi tiết nhất, mình sẽ like)
Gọi 3 số cần tìm là a;b;c(a<=b<=c)
Ta có: 1/a+1/b+1/c=2
Nếu a;b;c<3 thì thỏa mãn
vì 1/2+1/2+1/2=1.5<2
=> phải có 1 số >1/2
=>số đó =1
=>1+1/2+1/2=2
Vậy 3 số cần tìm là: 1;2;2
Tìm 2 số biết tổng của chúng bằng 9 và tích của 2 số gấp đôi tổng.
Ai giải đúng tui cho 1 like. Nhưng giải tường trình ra nha mấy thánh.
Gọi số đó là ab.
a + b = 9
a x b = 9 x 2 = 18
Ta có: 9 = 0 + 9 = 1 + 8 = 2 + 7 = 3 + 6 = 4 + 5
Ta thấy chỉ có 3 x 6 mới = 18
Vậy hai sô đó là 3 và 6.
số 6 và số 3
tổng : 6+3=9
Tích gấp đôi tổng, mà tổng bằng 9.
=>tích: 9.2=18 ; 6.3 = 18
1. Tìm 3 số nguyên dương biết tích của chúng gấp đôi tổng của chúng.
2. Tìm 4 số nguyên dương biết tích của chúng bằng tổng của chúng
1,
Gọi 3 số cần tìm là \(x,y,z\left(x,y,z\in Z;x,y,z>0\right)\)
Ta có : \(xyz=2\left(a+b+c\right)\)
Giả sử :\(x\ge y\ge z\Leftrightarrow xyz\le2.3x\)
\(xy\le6\) mà\(x,y\in Z\)
\(\Leftrightarrow xy\in\left\{1;2;3;4;5;6\right\}\)
Giải các trường hợp, ta được (x,y,z) là (1,3,8) ; (1,4,5) ; (2,2,4) và các hoán vị
Mk đang cần
Có thể giải hết trường hợp đó ra ko
tìm 4 số nguyên dương sao cho tổng của chúng bằng tích của chúng
Tìm 3 số nguyên dương sao cho tổng của chúng bằng tích của chúng
Tìm bốn số nguyên dương sao cho tổng của chúng bằng tích của chúng.
Gọi 4 số tự nhiên là a, b, c, d (a, b, c, d∈N∗)
Không mất tính tổng quát, giả sử a≥b≥c≥d≥1
Ta có:
abcd=a+b+c+d (1)
⇒abcd≤4a
⇒bcd≤4 (a>0
⇒d3≤4
⇒d=1
Với d=1, ta có:
(1)⇔abc=a+b+c+1 (2)
⇒abc≤3a+1
⇒bc≤3+1a≤4
⇒c2≤4
⇒c=1∨c=2
TH1: c=1. Ta có:
(2)⇔ab=a+b+2
⇔(a−1)(b−1)=3
Vì a≥1; b≥1⇒a−1≥0; b−1≥0a≥1; b≥1⇒a−1≥0; b−1≥0
Mà a≥b⇒a−1≥b−1
Do đó a−1=3; b−1=1⇔a=4
TH2: c=2. Ta có:
(2)⇔ab=a+b+3(2)
⇔(a−1)(b−1)=4
Vì a≥1; b≥1⇒a−1≥0; b−1≥0
Mà a≥b⇒a−1≥b−1
Do đó: a−1=4; b−1=1a−1=4; b−1=1 hoặc a−1=2; b−1=2
⇔a=5; b=2⇔a=5; b=2 hoặc a=3; b=3
Vậy 4 số tự nhiên cần tìm là (1; 1; 2; 4); (1; 2; 3; 3); (1; 2; 2; 5)(1; 1; 2; 4); (1; 2; 3; 3); (1; 2; 2; 5)
tìm 4 số nguyên dương sao cho tổng của chúng bằng tích của chúng
Ta có a.b.c = a+b+c
Giả sử a = b = c ta có a^3 = 3a => a^2 = 3. Ptrình này không cho nghiệm nguyên dương, nên a; b; c là 3 số nguyên dương phân biệt.
Tìm các số nguyên dương:
Giả sử a là số lớn nhất trong 3 số. Ta có a + b + c = a.b.c < 3a. Hay tích b.c <3. Vì a; b; c là các số nguyên dương; b.c <3. Do b;c nguyên dương nên tích b,c nguyên dương hay b.c = 1 hoặc b.c =2. Mặt khác chứng minh được b khác c nên b và c chỉ có thể là 1 và 2. Ở đây ta giả sử c là 1. thì b là 2. ﴾b khác 2 thì tích b.c > 3 là vô lý﴿.
Vậy ta có 1 + 2 + a = 1.2.a hay 3+a = 2a => a = 3.
Gọi các số nguyên dương cần tìm là a,b,c,d (\(a,b,c,d>0\))
Giả thiết : \(a+b+c+d=abcdf\)
Không mất tính tổng quát, ta giả sử a là số lớn nhất. Khi đó
\(abcd=a+b+c+d\le4a\Rightarrow bcd\le4\)
Ta có \(4=1.1.4=2.2.1\) . Vì vai trò của b,c,d là như nhau , do đó ta chỉ cần chọn hai trường hợp là b = c = 1, d = 4 suy ra : a+2+4 = 4a => 3a = 6 => a = 2
Trường hợp còn lại : b = c = 2 , d = 1 suy ra a + 4 + 1 = 4a => a = 5/3(loại)
Vậy được các số cần tìm là 2,1,1,4