chứng minh rằng:Nếu x/(a+2b+c)=y/(2a+b-c)=z/(4a-4b+c) thì a/(x+2y+z)=b/(2x+y-z)=c/(4x-4y+z)
chứng minh : nếu x/a+2b+c=y/2a+b-c=z/4a-4b+c
thì a/x+2y+z=b/2x+y-z=c/4x-4y+z
Chứng minh rằng nếu x/ a + 2b + c = y/ 2a + b - c = z/ 4a - 4b +c thì a/x + 2y + z = b/ 2x + y -z = c / 4x -4y +z
Chứng minh rằng: Nếu x/(a+2b+c)=y/(2a+b-c)=z/(4a-4b+c) Thì a/(x+2y+z)=b/(2x+y+z)=c/(4x-4y+z)
Bạn lưu ý, gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người đọc hiểu đề của bạn hơn nhé.
Chứng minh nếu x / a + 2b + c = y / 2a + b - c = z / 4a -4b + c thì a / x + 2y + z = b / 2x + y -z = c / 4x - 4y + z
cho x/(a+2b-c)=y/(2a+b+c)=z/(4b+c-4a) . Chứng minh a/x+2y-z = b/2x+y+z = c/4y+z-4x
Cho x/(a+2b+c)=y/(2a+b-c)=z/(4a-4b+2c)
Chứng minh a/(x+2y-z)=b/(2x+y-z)=c/(4x-4y+z)
Cho x/a+2b+c = y/2a +b-c = z/4a -4b+c
Chung minh : a/x+2y+z = b/2x+y-z = c/4x-4y +z
Chứng minh rằng: Nếu \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}thì\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)
Chứng minh rằng:
Nếu x/a+2b+c = y/2a+b-c = z/4a-4b+c thì
a/x+2y+z = b/2x+y-z = c/4x-4y+z ( với x, y, z khác 0 và các mẫu đều khác 0 )
Giúp mình nhanh nhé
Đặt x/a+2b+c = y/2a+b-c = z/4a-4b+c = k
=> x = k(a+2b+c) ; y = k(2a+b-c) ; z = (4a-4b+c)k
Sau đấy thay lần lượt vào a/x+2y+z ; b/2x+y-z ; c/4x-4y+z
Đặt x/a+2b+c = y/2a+b-c = z/4a-4b+c = k
=> x = k(a+2b+c) ; y = k(2a+b-c) ; z = (4a-4b+c)k
Sau đấy thay lần lượt vào a/x+2y+z ; b/2x+y-z ; c/4x-4y+z