Những câu hỏi liên quan
DN
Xem chi tiết
NV
18 tháng 12 2016 lúc 17:34

a) Dễ dàng chứng minh tam giác ABC và ACD đều

Suy ra AC=a, SA= AC.tan(gócSCA)=a.tan(600)

\(V_{S.ABCD}=\frac{1}{3}.SA.S_{ABCD}=\frac{1}{3}.a\sqrt{3}.a^2.\frac{\sqrt{3}}{2}=\frac{a^3}{2}\)

b) Có 2 cách làm để tìm khoảng cách từ H đến mp(SCD), nhưng bạn nên chọn phương pháp tọa độ hóa cho dễ

Chọn A làm gốc tọa độ , các tia AD, AI, AS lần lượt trùng tia Ax, Ay, Az

Có ngay tọa độ các điểm \(S\left(0;0;a\sqrt{3}\right)\) , \(D\left(a;0;0\right)\) , \(I\left(0;\frac{a\sqrt{3}}{2};0\right)\)

\(\Rightarrow C\left(\frac{a}{2};\frac{a\sqrt{3}}{2};0\right)\)

theo số liệu đã cho, dễ xác định được điểm H chia đoạn SI với tỷ lệ 2:1

\(\Rightarrow H\left(0;\frac{a}{\sqrt{3}};\frac{a}{\sqrt{3}}\right)\)

Bây giờ chỉ cần viết pt (SCD) là tính được ngay khoảng cách từ H đến SCD

\(\left(SCD\right):\sqrt{3}x+y+z-\sqrt{3}=0\)

\(d\left(H\text{/}\left(SCD\right)\right)=\frac{a\sqrt{3}}{\sqrt{5}}\)

Bình luận (5)
PB
Xem chi tiết
CT
22 tháng 3 2019 lúc 12:25

Đáp án B

Gọi H là trọng tâm Δ A B C

Dựng H K ⊥ A B , H E ⊥ C D , H F ⊥ S E

Ta có A B ⊥ S H K ⇒ S K H ⏜ = 60 °

Do đó S H = H K tan 60 °

Mặc khác H K = H B sin 60 °  ( Do  Δ A B C  là tam giác đều nên A B D ⏜ = 60 ° ) suy ra  H K = a 3 sin 60 ° = a 3 6 ⇒ S H = a 2

Lại có H E = H D tan 60 ° = a 3 3 ⇒ H F = a 7 = d H ; S C D

Do đó  B D H D = 3 2 ⇒ d B = 3 2 d H = 3 a 17 14

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 6 2019 lúc 12:40

Đáp án là A.

d B ; S C D = 3 2 d G ; S C D

Tính được:  G H = a 3 3 ;   S G = a 2 ; G K = a 7 .

Vậy  d B ; S C D = 3 2 d G ; S C D = 3 2 . a 7 = 3 a 2 7 .

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 10 2018 lúc 5:23

Đáp án A

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 3 2019 lúc 14:40

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 3 2018 lúc 5:29

Đáp án B

Bình luận (0)
HD
Xem chi tiết
LP
16 tháng 6 2023 lúc 10:14

 Gọi O là giao điểm của AC và BD. Dễ thấy \(\Delta OAB\) vuông tại O và \(OB=\dfrac{a\sqrt{3}}{2}\). Từ đó \(OA=\sqrt{AB^2-OB^2}=\sqrt{\left(\dfrac{\sqrt{3}}{2}a\right)^2-a^2}=\sqrt{\dfrac{1}{4}a^2}=\dfrac{a}{2}\) \(\Rightarrow AC=a\).

Vì \(SA\perp mp\left(ABCD\right)\) nên \(SA\perp AC\) tại A hay \(\Delta SAC\) vuông tại A. 

Lại có \(\tan SAC=\dfrac{SA}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\) nên \(\widehat{SAC}=60^o\), suy ra góc giữa SC và mp(ABCD) bằng 60o \(\Rightarrow\) Chọn A

 

Bình luận (0)
LP
16 tháng 6 2023 lúc 10:15

Chỗ \(\widehat{SAC}\) em sửa lại là \(\widehat{SCA}\) mới đúng ạ.

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 11 2018 lúc 17:39

Đáp án là C


Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 6 2017 lúc 11:23

Chọn B.

Gọi O = AC ∩ BD. Vì ABCD là hình thoi nên BO ⊥ AC(1). Lại do:

Từ (1) và (2) ta có:BO ⊥ (SAC)

Ta có: 

Vì ABCD là hình thoi có ABC = 60 ° nên tam giác ABC đều cạnh a

Trong tam giác vuông SBO ta có: 

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 7 2019 lúc 6:31

Đáp án C

Ta có: S A B C = 1 2 A B . A C   sin A = a 2 3 ⇒ S A B C D = 2 a 2 3

Do đó V = 1 3 S O . S A B C D = a 2 3 2 .

Bình luận (0)