So sánh M= \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)với 1 ta được M___1
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
So sánh M = \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\) với 1 ta được M...1
Đáp số là M > 1. Bạn cần cách giải không ?
Co minh biet ket qua roi ban HiHI
mk chi cac bạn tuyet chieu;
nhung bai toan dang nay mk thuong lay so cu the nhu 1;2;3 .... thay vao se doan dc kq vi violympic thoi gian thi co hạn
cac ban co dong y k
;
Cho a,b,c>0. So sánh \(m=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\) với 1
kich mk di
diem mk thap qua
thank you
Ta có: m=\(\frac{a}{c+b}+\frac{b}{c+a}+\frac{c}{a+b}\)
= 1/2 <1
So sánh
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\) với 1
Ta có :
\(\frac{a}{b+c}>\frac{a}{a+b+c}\)
\(\frac{b}{c+a}>\frac{b}{a+b+c}\)
\(\frac{c}{a+b}>\frac{c}{a+b+c}\)
\(\Rightarrow\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a+b+c}{a+b+c}\)
\(\Rightarrow\frac{a}{c+b}+\frac{b}{a+c}+\frac{c}{a+b}>1\)
Chúc bạn học tốt !!!
a/b+c > a/a+b+c (1)
b/c+a > b/a+b+c (2)
c/a+b > c/a+b+c (3)
Lấy (1)+(2)+(3) ta có
a/b+c + b/c+a +c/a+b < 1
Ta có:
\(\frac{a}{b+c}>\frac{a}{a+b+c};\frac{b}{a+b+c}>\frac{b}{a+b+c};\frac{c}{a+b}>\frac{c}{a+b+c}\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+c+b}+\frac{c}{a+b+c}\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>\frac{a+b+c}{a+b+c}\)
Ta thấy \(\frac{a+b+c}{a+b+c}=1\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>1\)
Vậy......
Cô nàng Vân Anh cũng hỏi câu này à?? Lạ nhé!!
So sánh:\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)với 1
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(ChoS=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}biếta+b+c=7và\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{7}{10}\)Hãy so sánh S với\(1\frac{8}{11}\)
Giúp mình với nha! đây là bài trong bộ đề thi hsg lớp 6 của mình đó.
So sánh tổng \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\) với 1
bạn thiếu đề đó mà kết quả là bằng nhau
Mà đây là lớp 4 đó
Ai tích mk mk tích lại cho
Cho a,b,c \(\in\)N *. So sánh :
\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)với 2
Đang cần gấp
\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
\(=\left(1-\frac{b}{a+b}\right)+\left(1-\frac{c}{b+c}\right)+\left(1-\frac{a}{c+a}\right)\)
\(< 3-\left(\frac{b}{a+b+c}+\frac{c}{b+c+a}+\frac{a}{c+a+b}\right)=3-1=2\)
=>M < 2
Ta có:
\(\frac{a}{a+b}<\frac{a+c}{a+b+c};\frac{b}{b+c}<\frac{b+a}{a+b+c};\frac{c}{c+a}<\frac{c+b}{a+b+c}\)
=> \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<\frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Vậy M < 2.
Cho a,b,c là các số tự nhiên khác 0.Hãy so sánh \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)với số 1
Vì a,b,c là các số tự nhiên khác 0 nên a,b,c > 0.
Do vậy a < a + b < a + b + c
b < b + c < a + b + c
c < c + a < a + b + c
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
a, Cho A=\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{99}+\frac{1}{100}\) . So Sánh A với 1
b, B=\(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\). So sánh B với \(\frac{1}{2}\)
c, cho M=\(\frac{2013}{2014}+\frac{2014}{2015}\)và N=\(\frac{2013+2014}{2014+2015}\). So sánh M và N
Câu a, p/s cuối cùng là \(\frac{1}{100}\)nha mí bn
a) Ta có :
\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}\)
\(>\frac{1}{10}+\frac{1}{100}.90=\frac{1}{10}+\frac{90}{100}=1\)
vậy A > 1
b) \(B=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\)
\(>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{1}{20}.10=\frac{1}{2}\)
Vậy B > \(\frac{1}{2}\)