Những câu hỏi liên quan
PB
Xem chi tiết
CT
22 tháng 11 2019 lúc 7:59

Đáp án C

Phương pháp : Xác định hàm số f’(x) từ đó tính được 

Cách giải : Ta dễ dàng tìm được phương trình parabol là

Đồ thị hàm số đi qua gốc tọa độ 

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 1 2018 lúc 17:31

Bình luận (0)
PB
Xem chi tiết
CT
26 tháng 9 2018 lúc 15:49

Bình luận (0)
PB
Xem chi tiết
CT
9 tháng 8 2019 lúc 7:47

Chọn đáp án D.

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 9 2018 lúc 10:59

+ Ta có y '   =   f ' ( x ) = a d   -   b c ( c x   +   d ) 2  . Từ đồ thị hàm số y= f’(x)  ta thấy:

Đồ thị hàm số y= f’(x)  có tiệm cận đứng x=1 nên –d/c= 1 hay  c= -d

Đồ thị hàm số y= f’(x )  đi qua điểm (2;2)

⇒ a d   -   b c ( 2 c   +   d ) 2   =   2   ↔ a d   -   b c   =   2   ( 2 c + d ) 2

Đồ thị hàm số y= f’(x)  đi qua điểm (0;2)

⇒ a d   -   b c d 2   =   2   ↔ a d   -   b c   =   2 d 2

Đồ thị hàm số y=f(x)  đi qua điểm (0;3) nên b/d= 3 hay b= 3d

Giải hệ  gồm 4 pt này ta được a=c= -d và b= 3d  .

 Ta chọn a=c= 1 ; b= -3 ; d= -1  

⇒ y   =   x   -   3 x   - 1  

Chọn  D.

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 4 2019 lúc 3:56

Bình luận (0)
PB
Xem chi tiết
CT
20 tháng 12 2017 lúc 14:53

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 6 2018 lúc 11:40

Đáp án B.

Từ đồ thị hàm số y = f ' ( x )  ta có bảng biến thiên:

Từ bảng biến thiên ta có f ( b ) > f ( a ) > 0  

Quan sát đồ thị y = f ' ( x ) , dùng phương pháp tích phân để tính diện tích.

Ta có  ∫ a b f ' ( x ) d x < ∫ a c 0 - f ' ( x ) d x ⇒ f ( c ) < f a

Nếu f c < 0  thì đồ thị hàm số y = f   ( x )  cắt trục hoành tại 2 điểm phân biệt.

Nếu f c = 0  thì đồ thị hàm số  y = f   ( x )  tiếp xúc với trục hoành tại 1 điểm.

Nếu f c > 0  thì đồ thị hàm số  y = f   ( x )  không cắt trục hoành.

Vậy đồ thị hàm số  y = f   ( x )  cắt trục hoành tại nhiều nhất 2 điểm.

Bình luận (0)
PB
Xem chi tiết
CT
1 tháng 6 2019 lúc 6:35

Chọn C

Bình luận (0)
PB
Xem chi tiết
CT
29 tháng 7 2019 lúc 5:39

Bình luận (0)