Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d : x - 1 2 = y + 1 1 = z - 2 2 và d ' : x + 1 1 = y 2 = z - 1 1 . Phương trình mặt phẳng chứa đường thẳng d và tạo với đường thẳng d ' một góc lớn nhất là:
Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng d : x = 1 + t y = 2 + 3 t z = 3 - t , d ' : x = 2 - 2 t ' y = - 2 + t ' z = 1 + 3 t ' . Tìm tọa độ giao điểm M của hai đường thẳng d và d’
A. M(-1;0;4)
B. M(4;0;-1)
C. M(0;4;-1)
D. M(0;-1;4)
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d: x = 1 + t y = 2 + 3 t z = 3 - t và d': x = 2 - 2 t ' y = - 2 - t ' z = 1 + 3 t ' . Tìm tọa độ M giao điểm của d và d'.
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng . Phương trình đường thẳng d nằm trong (α): x + 2y - 3z - 2 = 0 và cắt hai đường thẳng d1;d2 là:
A. x + 3 5 = y - 2 - 1 = z - 1 1
B. x + 3 - 5 = y - 2 1 = z - 1 - 1
C. x - 3 - 5 = y + 2 1 = z + 1 - 1
D. x + 8 1 = y - 3 3 = z - 4
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d : x 1 = y - 2 = z + 1 1 và d ' : x - 1 - 2 = y - 2 4 = z 2 . Viết phương trình mặt phẳn (Q) chứa hai đường thẳng d và d’.
Đáp án B.
Ta có: Hai vector chỉ phương của hai đường thẳng là cùng phương nên hai đường thẳng luôn đồng phẳng.
Vector chỉ phương của đường thẳng d là u → = ( 1 ; - 2 ; - 1 )
Vector pháp tuyến của mặt phẳng
Phương trình mặt phẳng
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d: x 1 = y - 2 = z + 1 1 và d'= x - 1 - 2 ) = y - 2 4 = z 2 . Viết phương trình mặt phẳng (Q) chứa hai đường thẳng d và d’
A. Không tồn tại (Q)
B. (Q): y-2z-2= 0
C. (Q): x-y-2= 0
D. (Q):-2y+4z+1= 0
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x - 3 2 = y + 2 - 1 = z + 1 4 . Điểm nào sau đây không thuộc đường thẳng
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d: x + 1 3 = y - 1 - 2 = z - 2 1 .Đường thẳng d có một VTCP là:
A. a → = 1 ; - 1 ; - 2
B. a → = - 1 ; 1 ; 2
C. a → = 3 ; 2 ; 1
D. a → = 3 ; - 2 ; 1
Đáp án D
Phương pháp:
Đường thẳng d: x - x 0 a = y - y 0 b = z - z 0 c có 1 VTCP là a → = a ; b ; c
Cách giải: Đường thẳng d có 1 VTCP là a → = 3 ; - 2 ; 1
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x - 2 - 1 = y - 1 2 = z 1 . Đường thẳng d đi qua điểm nào dưới đây ?
A. M(-1;2;1).
B. N(2;1;1).
C. P(-2;-1;0).
D. Q(2;1;0).
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x − 1 2 = y 1 = z + 1 − 2 . Trong các điểm dưới đây, điểm nào thuộc đường thẳng d?
A. M(-1;0;1)
B. N(3;1;1)
C. P(-1;-1;1)
D. Q(1;0;1)
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng ∆ 1 : x + 1 3 = y - 2 1 = z - 1 2 v à ∆ 2 : x - 1 1 = y 2 = z + 1 3 . Phương trình đường thẳng song song với d : x = 3 y = - 1 + t z = 4 + t và cắt hai đường thẳng ∆1;∆2 là:
A. x = 2 y = 3 - t z = 3 - t
B. x = - 2 y = - 3 - t z = - 3 - t
C. x = - 2 y = - 3 + t z = - 3 + t
D. x = 2 y = - 3 + t z = 3 + t
Chọn A.
Gọi ∆ là đường thẳng cần tìm
Đường thẳng d có vecto chỉ phương a d → = 0 ; 1 ; 1
Ta có A(2;3;3); B(2;2;2)
∆ đi qua điểm A(2;3;3) và có vectơ chỉ phương
Vậy phương trình của ∆ là