Những câu hỏi liên quan
NN
Xem chi tiết
PB
Xem chi tiết
CT
9 tháng 5 2019 lúc 14:04

Điều kiện: n - 1 ≥ 4 nên n ≥ 5

Hệ điều kiện ban đầu tương đương:

⇔ n - 1 n - 2 n - 3 n - 4 4 . 3 . 2 . 1 - n - 1 n - 2 n - 3 3 . 2 . 1 ≤ 5 4 n - 2 n - 3 n + 1 n n - 1 n - 2 n - 3 5 . 4 . 3 . 2 . 1 ≥ 7 15 n + 1 n n - 1 ⇔ n 2 - 9 n - 22 < 0 n ≥ 5 n 2 - 5 n - 50 ≥ 0 ⇒ n = 10

Vậy n = 10 thỏa yêu cầu bài toán

Đáp án D

Bình luận (0)
PN
Xem chi tiết
PO
Xem chi tiết
TK
Xem chi tiết
BA
Xem chi tiết
BA
29 tháng 3 2022 lúc 10:25

cíu mình điii

Bình luận (0)
BA
29 tháng 3 2022 lúc 12:36

giup minh voiii

 

Bình luận (0)
NC
Xem chi tiết
LD
Xem chi tiết
NH
15 tháng 7 2018 lúc 18:32

\(a^3+3a^2+5=5^b\)

\(\Rightarrow a^2\left(a+3\right)+5=5^b\)

\(\Rightarrow a^2.5^c+5=5^b\)(vì a+3=5c)

\(\Rightarrow a^2.5^{c-1}+1=5^{b-1}\) (chia cả 2 vế cho 5)

=> c - 1 = 0 hoặc b - 1 = 0

+) b = 1, khi đó ko thoả mãn

+) c = 1 => a = 2 => b = 2

Bình luận (0)
DM
Xem chi tiết
TD
4 tháng 8 2019 lúc 15:33

n2 + n + 1 = ( m+ m - 3 ) ( m2 - m + 5 ) = m4 + m2 + 8m - 15

\(\Rightarrow\)n2 + n - ( m4 + m2 + 8m - 16 ) = 0                  ( 1 )

để phương trình ( 1 ) có nghiệm nguyên dương thì : 

\(\Delta=1+4\left(m^4+m^2+8m-16\right)=4m^4+4m^2+32m-63\)phải là số chính phương

Ta có : \(\Delta=\left(2m^2+2\right)^2-4\left(m-4\right)^2-3< \left(2m^2+2\right)^2\)với m thuộc Z+

Mặt khác : \(\Delta=\left(2m^2+1\right)^2+32\left(m-2\right)\)

do đó : \(\Delta=\left(2m^2+1\right)^2+32\left(m-2\right)>\left(2m^2+1\right)^2\)với m > 2

\(\Rightarrow\left(2m^2+1\right)^2< \Delta< \left(2m^2+2\right)^2\)với m > 2

Nên ( 1 ) có nghiệm nguyên dương khi m = 1 hoặc m = 2

+) m = 1 thì \(n^2+n+16=0\)   vô nghiệm

+) m = 2 thì \(n^2=n-20=0\Rightarrow\orbr{\begin{cases}n=4\left(tm\right)\\n=-5\left(loai\right)\end{cases}}\)

Thử lại m = 2 và n = 4 thỏa mãn điều kiện bài toán

Vậy m = 2 và n = 4

P/s : bài " gắt "

Bình luận (0)