Những câu hỏi liên quan
NL
Xem chi tiết
NQ
Xem chi tiết
TM
Xem chi tiết
NL
Xem chi tiết
NQ
31 tháng 12 2017 lúc 20:20

3S = 1.2.3+2.3.3+3.4.3+.....+n.(n+1).3

= 1.2.3+2.3.(4-1)+3.4.(5-2)+.....+n.(n+1).[(n+2)-(n-1)]

= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.....+n.(n+1).(n+2)-(n-1).n.(n+1)

= n.(n+1).(n+2)

=> 3S +n.(n+1).(n^2-2) = n.(n+1).(n+2)+n.(n+1).(n^2-2)

= n.(n+1).(n+2+n^2-2) = n.(n+1).(n^2+n)

= n.(n+1)+n.(n+1) = n^2.(n+1)^2 = [(n.(n+1)]^2 là 1 số chính phương

k mk nha

Bình luận (0)
TT
Xem chi tiết
AH
26 tháng 8 2024 lúc 20:24

Lời giải:
$3S=1.2(3-0)+2.3.(4-1)+3.4(5-2)+...+n(n+1)[(n+2)-(n-1)]$

$=[1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)]-[0.1.2+1.2.3+2.3.4+...+(n-1)n(n+1)]$

$=n(n+1)(n+2)$
$\Rightarrow 3S+n(n+1)(n^2-2)=n(n+1)(n+2)+n(n+1)(n^2-2)$
$=n(n+1)(n+2+n^2-2)=n(n+1)(n^2+n)=n(n+1)n(n+1)=[n(n+1)]^2$ là số chính phương.

Bình luận (0)
PS
Xem chi tiết
H24
Xem chi tiết
VA
Xem chi tiết
GS
19 tháng 3 2016 lúc 15:19

Ta có: A = 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/n(n+1)

A= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ..... +1/n - 1/(n+1)

A= 1 - 1/(n+1)

A= (n+1)/(n+1) - 1/(n+1)

A= n/(n+1)

Mà n và n+1 là 2 số tự nhiên liên tiếp => n và n+1 nguyên tố cùng nhau

=> n không chia hết cho n+1

=> A không phải là một số nguyên.

Bình luận (0)
NL
Xem chi tiết
VH
7 tháng 10 2017 lúc 19:04

a, Vì n \(\in\)N => n là số chính phương

mà 9 = 32 là số chính phương

=> n2 + 9 là số chính phương.

Vậy A = n2 + 9 là số chính phương.

CHÚC BẠN HỌC TỐT!!!!

Bình luận (2)
TV
22 tháng 1 2023 lúc 9:39

Vì A=n2+9 là SCP
Đặt A=n2+9=m2 (m thuộc N)

<=> 9=m2-n2

<=> 9=(m-n)(m+n)

Vì n thuộc N => m-n thuộc Z, m+n thuộc N

=> m-n,m+n thuộc Ư(9)

mà m+n>m-n

nên \(\left\{{}\begin{matrix}m+n=9\\m-n=1\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}m=5\\n=4\end{matrix}\right.\)(thỏa mãn)

 Vậy A là SCP <=>n=4

Bình luận (0)