Cho hàm số f ( x ) = x 3 - 3 x 2 + x + 3 2 . Phương trình f ( f ( x ) ) 2 f ( x ) - 1 = 1 có bao nhiêu nghiệm thực phân biệt ?
A. 4 nghiệm.
B.9 nghiệm.
C.6 nghiệm.
D.5 nghiệm.
Cho hàm số F ( x ) = a x 3 + b x 2 + c x + 1 là một nguyên hàm của hàm số f(x) thỏa mãn f(1) = 2, f(2) = 3, f(3) = 4. Hàm số F(x) là
Chọn D.
Ta có
Vậy F(x)= 1 2 x 2 + x + 1
Cho hàm số f ( x ) có đạo hàm f ' ( x ) = ( x + 1 ) 4 ( x - 2 ) 5 ( x + 3 ) 3 . Số điểm cực trị của hàm số f ( x ) là:
A. 5
B. 3
C. 1
D. 2
Cho hàm số f ( x ) có đạo hàm f ' ( x ) = ( x + 1 ) 4 ( x - 2 ) 5 ( x + 3 ) 3 . Số điểm cực trị của hàm số f ( x ) là:
A. 5
B. 3
C. 1
D. 2
Cho hàm số f ( x ) có đạo hàm f ' ( x ) = ( x - 1 ) 2 ( x - 3 ) 3 ( 2 x + 3 ) , ∀ x ∈ ℝ . Số cực trị của hàm số đã cho là
A. 1
B. 2
C. 0
D. 3
Cho hàm số f(x) có đạo hàm là f''(x) = x - 2 4 ( x - 1 ) ( x + 3 ) x 2 + 3 . Tìm số điểm cực trị của hàm số y = f(x)
A. 6.
B. 3.
C. 1.
D. 2.
Đáp án là D
Hàm số f(x) có đạo hàm là
f''(x) = 0
Bảng biến thiên
Từ BBT ta thấy hàm số có 2 điểm cực trị.
Bài 1: Xét tính đơn điệu của hàm số \(y=f(x)\) khi biết đạo hàm của hàm số là:
a) \(f'(x)=(x+1)(1-x^2)(2x-1)^3\)
b) \(f'(x)=(x+2)(x-3)^2(x-4)^3\)
Bài 2: Cho hàm số \(y=f(x)\) có đạo hàm \(f'(x)=x(x+1)(x-2)\). Xét tính biến thiên của hàm số:
a) \(y=f(2-3x)\)
b) \(y=f(x^2+1)\)
c) \(y=f(3x+1)\)
Cho hàm số có đạo hàm , . Số điểm cực trị của hàm số đã cho là
Cho hàm số f(x) có đạo hàm f ' ( x ) = x 2 . ( x - 1 ) 3 . ( x - 2 ) 4 . ( x - 3 ) 5 ; ∀ x ∈ R . Số điểm cực trị của hàm số đã cho là:
A. 1
B. 4
C. 2
D. 3
Cho hàm số f(x) có đạo hàm f ' ( x ) = x 2 ( x - 1 ) 3 ( x - 2 ) 4 ( x - 3 ) 5 , ∀ x ∈ ℝ . Số điểm cực trị của hàm số đã cho là
A. 1
B. 4
C. 2
D. 3
Cho hàm số f(x) có đạo hàm f ’ ( x ) = x 2019 ( x - 1 ) 2 ( x + 1 ) 3 . Số điểm cực đại của hàm số f(x) là
A. 1
B. -1
C. 0
D. 3