Tính A = 1/2 + 1/6+ 1/12 + 1/20 + ...+ 1/2450 + 1/ 2550
Tính A=1/2+1/6+1/12+1/20+...+1/2450+1/2550
tính A= 1/2+1/6+1/12+1/20+....+1/2450+1/2550
A=1/1x2+1/2x3+1/3x4+1/4x5+...+1/49x50+1/50x51
A=2-1/1x2+3-2/2x3+4-3/3x4+...+50-49/49x50+51-50/50x51
A=1-1/2+1/2-1/3+1/3+1/4+...-1/49+1/49-1/50+1/50-1/51
A=1-1/51
A=51/51-1/51
A=50/51
tick nha
Tính A= 1/2+ 1/6+ 1/12+1/20+....+1/2450+1/2550.
cách giải thế nào rồi mình an tick cho
Tính a biết a= 1/2 +1/6+1/12+1/20....+1/2450+1/2550
A=\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{50\cdot51}\)
A=\(\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+...+\left(\frac{1}{50}-\frac{1}{51}\right)\)
A=\(1-\frac{1}{51}\)
A=\(\frac{50}{51}\)
tính A biết
A =1/2+1/6+1/12+1/20+...+1/2450+1/2550
A = 1/2 + 1/6 + 1/12 + ..... + 1/2550
A = 1/1.2 + 1/2.3 + ....... + 1/50.51
A = 1/1 - 1/2 + 1/2 - ....... - 1/51
A= 1 - 1/51 = 50/51
Tính A = 1/2 + 1/6 + 1/12 + 1/20 + ... 1/2450+ 1/2550
Nhanh giùm mk nhé
A = 1/2 + 1/6 + 1/12 + 1/20 + ... + 1/2450 + 1/2550
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{2450}+\frac{1}{2550}\)
\(A=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{49x50}+\frac{1}{50x51}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}+\frac{1}{50}-\frac{1}{51}\)
\(A=1-\frac{1}{51}=\frac{50}{51}\)
Tìm A biết A băng 1/2 + 1/6 + 1/12 + 1/20 + ..... + 1/2450 + 1/ 2550
các bạn hướng dẫn cách làm cụ thể được không
Tính A = 1/2 + 1/6 + 1/12 + 1/20 + ... + 1/2450 + 1/2550
Viết cả lời giải ra
Nhanh giùm mk nha
A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...........+\frac{1}{49.50}+\frac{1}{50.51}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-........+\frac{1}{49}-\frac{1}{50}+\frac{1}{50}-\frac{1}{51}\)
= \(1-\frac{1}{51}=\frac{50}{51}\)