Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TL
Xem chi tiết
NA
25 tháng 2 2017 lúc 14:40

50/51

Bình luận (0)
NA
25 tháng 2 2017 lúc 15:03

dap an da dung roi

Bình luận (0)
DD
Xem chi tiết
MP
21 tháng 1 2016 lúc 18:04

A=1/1x2+1/2x3+1/3x4+1/4x5+...+1/49x50+1/50x51

A=2-1/1x2+3-2/2x3+4-3/3x4+...+50-49/49x50+51-50/50x51

A=1-1/2+1/2-1/3+1/3+1/4+...-1/49+1/49-1/50+1/50-1/51

A=1-1/51

A=51/51-1/51

A=50/51

tick nha

Bình luận (0)
TL
Xem chi tiết
TL
21 tháng 1 2016 lúc 18:41

cách giải thế nào rồi mình an tick cho

Bình luận (0)
XM
Xem chi tiết
H24
21 tháng 1 2016 lúc 21:36

A=\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{50\cdot51}\)

A=\(\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+...+\left(\frac{1}{50}-\frac{1}{51}\right)\)

A=\(1-\frac{1}{51}\)

A=\(\frac{50}{51}\)

Bình luận (0)
H24
24 tháng 2 2017 lúc 11:29

50/51

Bình luận (0)
NA
24 tháng 2 2017 lúc 14:50

50/51

Bình luận (0)
NL
Xem chi tiết
NQ
28 tháng 2 2016 lúc 17:47

A = 1/2 + 1/6 + 1/12 + ..... + 1/2550

A = 1/1.2 + 1/2.3 + ....... + 1/50.51

A = 1/1 - 1/2 + 1/2 - .......  - 1/51

A=  1 - 1/51 = 50/51 

Bình luận (0)
ND
Xem chi tiết
NA
Xem chi tiết
IY
26 tháng 9 2018 lúc 17:58

\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{2450}+\frac{1}{2550}\)

\(A=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{49x50}+\frac{1}{50x51}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}+\frac{1}{50}-\frac{1}{51}\)

\(A=1-\frac{1}{51}=\frac{50}{51}\)

Bình luận (0)
PT
26 tháng 9 2018 lúc 20:10

50/51

Bình luận (0)
PS
Xem chi tiết
H24
21 tháng 1 2016 lúc 19:45

49/303

Đúng 100% nhé cô mình mới dạy xong !

Bình luận (0)
PS
21 tháng 1 2016 lúc 20:10

các bạn hướng dẫn cách làm cụ thể được không

 

Bình luận (0)
NA
25 tháng 2 2017 lúc 14:46

50/51

Bình luận (0)
ND
Xem chi tiết
HG
21 tháng 1 2016 lúc 17:51

A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...........+\frac{1}{49.50}+\frac{1}{50.51}\)

   = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-........+\frac{1}{49}-\frac{1}{50}+\frac{1}{50}-\frac{1}{51}\)

   = \(1-\frac{1}{51}=\frac{50}{51}\)

Bình luận (0)