Số giá trị nguyên của m thuộc khoảng (-2019;2019) để phương trình 4 x 2 - 2 x + 1 - m . 2 x 2 - 2 x + 2 + 3 m - 2 = 0 có bốn nghiệm phân biệt là
A. 2017
B. 2016
C. 4035
D. 4037
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn - 10 ; 10 để hàm số y = x 3 - 3 x 2 + 3 m x + 2019 nghịch biến trên khoảng 1 ; 2 ?
A. 11
B. 20
C. 10
D. 21
Chọn A.
TXĐ: D = R
Ta có: y ' = 3 x 2 - 6 x + 3 m
Để hàm số đã cho nghịch biến trên 1 ; 2
thì y ' ≤ 0 , ∀ x ∈ 1 ; 2 và bằng 0 tại hữu hạn điểm
Hàm số y = x - 1 2 đồng biến trên 1 ; + ∞ nên cũng đồng biến trên 1 ; 2
Lại có m ∈ - 10 ; 10 và m ∈ Z nên m ∈ - 10 ; - 9 ; . . ; 0
Vậy có 11 giá trị của m
Có bao nhiêu giá trị nguyên của m thuộc khoảng (-2019; 2019) để hàm số sau có tập xác định là D = R
y = x + m + x 2 + 2 ( m + 1 ) x + m 2 + 2 m + 4 + log 2 ( x - m + 2 x 2 + 1 )
A. 2020
B. 2021
C. 2018
D. 2019
Có bao nhiêu giá trị nguyên của a thuộc khoảng (-2019; 2019) để l i m ( 4 n 2 + 3 n - 2 + a n - 3 ) = + ∞ ?
A. 2018
B. 2019
C. 2020
D. 2021
Có tất cả bao nhiêu giá trị nguyên của tham số a thuộc khoảng (0; 2019) để l i m 9 n + 3 n + 1 5 n + 9 n + a ≤ 1 2187 ?
A. 2011
B. 2018
C. 2019
D. 2012
Số giá trị nguyên của tham số m nằm trong khoảng (0.2020) để phương trình x - 1 - 2019 - x = 2020 - m có nghiệm là
A. 2020
B. 2021
C. 2019
D. 2018
Do đó
Vẽ dáng đồ thị hàm số ta được:
Từ hình vẽ ta thấy phương trình đã cho có nghiệm nếu đường thẳng y = 2020 - m cắt đồ thị hàm số trên tại ít nhất một điểm hay
giá trị của m thỏa mãn bài toán.
Chọn D.
Số giá trị nguyên m thuộc đoạn [-2019; 2019] để phương trình
4 x - ( m - 3 ) . 2 x + 3 m + 1 = 0
có đúng một nghiệm lớn hơn 0 là:
A. 2021
B. 2022
C. 2019
D. 2020
Có bao nhiêu giá trị nguyên thuộc đoạn [0;2019] của tham số m để phương trình 4 x - m + 2018 2 x + 2019 + 3 m = 0 có hai nghiệm trái dấu?
A.2016
B.2019
C.2013
D.2018
Có bao nhiêu giá trị nguyên của m thuộc khoảng (−8;8) để hàm số y = 2 9 - x 2 9 - x 2 - m đồng biến trên khoảng 0 ; 5 ?
A. 9
B. 7
C. 8
D. 6
Ta có yêu cầu bài toán tương đương với:
Vậy có tất cả 7 số nguyên thoả mãn.
Chọn đáp án B.
Có bao nhiêu giá trị nguyên của m thuộc khoảng (−8;8) để hàm số y = 2 9 - x 2 9 - x 2 - m đồng biến trên khoảng 0 ; 5 ?
A. 9
B. 7
C. 8
D. 6
Chọn đáp án B.
Ta có yêu cầu bài toán tương đương với
y ' = m x 9 - x 2 ( 9 - x 2 - m ) 2 > 0 , ∀ x ∈ 0 ; 5
Vậy có tất cả 7 số nguyên thoả mãn.
Tìm số giá trị nguyên của tham số m thuộc khoảng (-2;2018) để hàm số y = 1 3 m x 3 − m − 1 x 2 + 3 m − 2 x + 1 3 đồng biến trên nửa khoảng 2 ; + ∞
A. 2018
B. 2017
C. 2019
D. 2016