Gọi z1, z2 là các nghiệm phức của phương trình z 2 - 2 z + 5 = 0 Giá trị của z 1 4 + z 2 4 bằng
A. 14
B. -7
C. -14
D. 7
Trong tập các số phức, gọi z 1 , z 2 là hai nghiệm của phương trình z 2 - z + 2017 4 = 0 với z 2 có thành phần ảo dương. Cho số phức z thỏa mãn z - z 1 = 1 . Giá trị nhỏ nhất của P = z - z 2 là
A. 2016 - 1
B. 2017 - 1 2
C. 2016 - 1 2
D. 2017 - 1
Đáp án A
Phương pháp.
Giả sử Giả phương trình ban đầu để tìm được nghiệm z 1 , z 2 Sử dụng giả thiết để đánh giá cho cho b. Đưa về một hàm cho b và sử dụng ước lượng cho b ở phần trước để tìm giá trị nhỏ nhất của P.
Lời giải chi tiết.
Tính toán ta tìm được hai nghiệm
Giả sử . Từ ta suy ra
Áp dụng (1) ta nhận được
Do đó giá trị nhỏ nhất của là 2016 - 1
Đạt được khi và chỉ khi
Trong tập hợp các số phức, gọi z 1 ; z 2 là nghiệm của phương trình z 2 - z + 2017 4 = 0 , với z 2 có thành phần ảo dương. Cho số phức z thoả mãn z - z 1 = 1 . Giá trị nhỏ nhất của P = z - z 2 là
A. 2016 - 1
B. 2017 - 1 2
C. 2016 - 1 2
D. 2017 - 1
Trong tập các số phức, gọi z 1 , z 2 là hai nghiệm của phương trình z 2 - z + 2017 4 = 0 với z 2 có thành phần ảo dương. Cho số phức z thỏa mãn z - z 1 = 1 Giá trị nhỏ nhất của P = z - z 2 là
Trong tập các số phức gọi z 1 , z 2 là hai nghiệm của phương trình z 2 − z + 2017 4 = 0 với z 2 có phần ảo dương. Cho số phức z thỏa mãn z − z 1 = 1. Giá trị nhỏ nhất của P = z − z 2 là
A. 2016 − 1
B. 2017 − 1
C. 2017 − 1 2
D. 2016 − 1 2
Đáp án A
Phương trình z 2 − z + 2017 2 = 0 ⇔ 4 z 2 − 4 z + 2017 = 0
⇔ 2 z − 1 2 = 2016 i 2 ⇔ z 1 = 1 − i 2016 2 z 2 = 1 + i 2016 2
Ta có z − z 1 + z − z 2 ≥ z − z 1 − z − z 2 = z − z 2 ≥ z 1 − z 2 − z − z 1 = 2016 − 1
Vật giá trị nhỏ nhất của biểu thức P là P min = 2016 − 1
Trong tập các số phức, gọi z 1 , z 2 là hai nghiệm của phương trình z 2 - z + 2017 4 = 0 với z 2 có thành phần ảo dương. Cho số phức z thỏa mãn | z - z 1 |=1 Giá trị nhỏ nhất của P=| z - z 2 |là
A. 2016 - 1
B. 2017 - 1 2
C. 2016 - 1 2
D. 2017 - 1
Trong tập các số phức gọi z 1 , z 2 là hai nghiệm của phương trình z 2 - z + 2017 4 với z 2 có phần ảo dương. Cho số phức z thỏa mãn |z- z 1 | = 1 Giá trị nhỏ nhất của P = |z- z 2 | là
A . 2016 - 1
B . 2017 - 1
C . 2017 - 1 2
D . 2016 - 1 2
Đáp án A
Phương trình
Ta có
Vật giá trị nhỏ nhất của biểu thức P là
Gọi z 1 , z 2 là hai nghiệm phức của phương trình z 2 + z + 1 = 0 . Giá trị của biểu thức z 1 + z 2 bằng
A. 1 2
B. 4
C. 2
D. 1
Gọi z 1 ; z 2 là hai nghiệm phức của phương trình z 2 + z + 1 = 0 . Giá trị của P = z 1 2019 + z 2 2019 là
A. P = 2
B. P = 3
C. P = 2 3
D. P = 4038
Cho số phức z và gọi z 1 , z 2 là hai nghiệm phức của phương trình z 2 + 8 i = 0 (có z 1 có phần thực dương). Giá trị nhỏ nhất của biểu thức P = z - z 1 + z 2 - z + z ¯ + 2 z 1 + z 2 2 được viết dưới dạng m n + p q (trong đó n , p ∈ N ; m , q là các số nguyên tố). Tổng m + n + p + q bằng
A. 10
B. 13
C. 11
D. 12
Gọi z 1 và z 2 là hai nghiệm phức của phương trình z 2 + z + 1 = 0 . Tính giá trị của z 1 2017 + z 2 2017
A.
B.
C.
D.
Đáp án C
Phương pháp: Tính z 1 , z 2 và sử dụng công thức Moivre
Cách giải: Phương trình z 2 + z + 1 có ∆ = 1 - 4 = - 3 nên có 2 nghiệm