Trong không gian với hệ trục toạ độ Oxyz, cho đường thẳng d có phương trình: x - 12 4 = y - 12 5 = z - 1 4 và mặt phẳng (P): 3x + 5y - z = 0. Tìm toạ độ giao điểm của đường thẳng d và mặt phẳng (P).
A. (1;0;1)
B. (1;1;6)
C. (12;0;9)
D. (0;0;2)
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d có phương trình x - 1 2 = y - 5 = z - 3 4 . Viết phương trình mặt phẳng α chứa trục Oy và song song với đường thẳng d
A. -2x + y = 0
B. x - 2z = 0
C. 2x - z = 0
D. 2x + z = 0
Đáp án C
Ta có n α → = u O y → , u d → = - 4 ; 0 ; 2 ⇒ α : 2 x - z = 0
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d có phương trình x - 1 2 = y + 2 1 = z - 3 4 . Điểm nào sau đây không thuộc đường thẳng d?
A. (1;-2;3)
B. (5;0;11)
C. (-1;3;-1)
D. (3;-1;7)
Đáp án C
Thay tọa độ điểm M trong bốn phương án vào phương trình đường thẳng d. Nhận thấy (-1;3;-1) không thuộc đường thẳng d
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng d : x = 0 y = t z = 1 . Viết phương trình mặt phẳng song song và cách đều đường thẳng d và trục x′Ox.
A. z-1/2=0.
B. z+1/2=0.
C. z-1=0.
D. z+1=0
Trong không gian với hệ trục tọa độ Oxyz cho điểm A và đường thẳng d có phương trình x + 1 2 = y - 2 - 2 = z 1 .Phương trình đường thẳng qua điểm A,vuông góc với đường thẳng d và cắt đường thẳng d là
A. x - 2 1 = y - 1 - 3 = z - 10 - 8
B. x - 2 1 = y - 1 3 = z - 10 - 10
C. x - 1 2 = y + 1 3 = z - 3 6
D. x + 1 2 = y - 1 - 3 = z + 3 6
Phương trình mặt phẳng qua A và vuông d là 2x -2y + z -12 = 0
Khi đó và cắt nhau tại B. Đường thẳng cần tìm là đường thẳng qua hai điểm A, B có phương trình x - 2 1 = y - 1 - 3 = z - 10 - 8 .
Đáp án A.
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng d: x - 1 2 = y + 5 - 1 = z - 3 4 . Phương trình nào dưới đây là phương trình của hình chiếu vuông góc của d lên mặt phẳng x+3=0?
A. x = - 3 y = - 5 - t z = - 3 + 4 t
B. x = - 3 y = - 5 + t z = 3 + 4 t
C. x = - 3 y = - 5 + 2 t z = - 3 - t
D. x = - 3 y = - 6 - t z = 7 + 4 t
Trong không gian với hệ toạ độ Oxyz,cho hai đường thẳng d 1 ; d 2 lần lượt có phương trình d 1 : x - 2 2 = y - 2 1 = z - 3 3 , d 2 : x - 1 2 = y - 2 - 1 = z - 1 4 . Phương trình mặt phẳng (α) cách đều hai đường thẳng d 1 ; d 2 là
A. 2x+y+3z+3=0.
B. 14x-4y-8z+3=0.
C. 7x-2y-4z=0.
D. 7x-2y-4z+3=0.
Trong không gian với hệ toạ độ Oxyz, cho hai đường thẳng d 1 , d 2 lần lượt có phương trình d 1 : x - 2 2 = y - 2 1 = z - 3 3 , d 2 : x - 1 2 = y - 2 - 1 = z - 1 4 . Phương trình mặt phẳng (P) cách đều hai đường thẳng d1;d2 là:
A. 7x – 2y - 4z = 0.
B. 7x – 2y - 4z + 3 = 0.
C. 2x+ y + 3z + 3 = 0
D. 14x – 4y – 8z + 3 = 0
Chọn D.
Ta có d1 đi qua A(2;2;3) và có
Do (P) cách đều d1;d2 nên (P) song song với d 1 , d 2
(P) có dạng 7x – 2y – 4z + d = 0
Vì (P) cách đều hai đường thẳng nên: d(A;(P)) = d(B;(P))
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d: x - 1 2 = y + 1 1 = z - 3 2 và điểm A(0;-2;-2) Mặt phẳng (P) đi qua điểm A và vuông góc với đường thẳng d có phương trình là
A. 2x + y - 2z + 4 = 0
B. 2x + y + 2z - 4 = 0
C. 2x + y - 2z - 4 = 0
D. 2x + y + 2z + 4 = 0
Chọn D
Mặt phẳng (P) vuông góc với đường thẳng d nên (P) nhận vecto chỉ phương của d là một vecto pháp tuyến. Ta có phương trình mặt phẳng (P) là
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): x + y - 5z + 4 = 0 và đường thẳng d : x + 1 2 = y + 1 1 = z + 5 6 . Hình chiếu vuông góc của đường thẳng d trên mặt phẳng (P) có phương trình là
A. x = - 2 + 3 t y = - 2 + t z = - t
B. x = - 2 + t y = 2 + 2 t z = t
C. x = 1 + 3 t y = 2 t z = 1 + t
D. x = 3 + t y = 2 z = 1 + t