Những câu hỏi liên quan
TA
Xem chi tiết
HP
24 tháng 9 2021 lúc 19:32

\(sin\left(\dfrac{\pi}{3}+x\right)\in\left[-1;1\right]\)

\(\Rightarrow y=\dfrac{3}{2}+sin\left(\dfrac{\pi}{3}+x\right)\in\left[\dfrac{1}{2};\dfrac{5}{2}\right]\)

\(\Rightarrow\left\{{}\begin{matrix}y_{min}=\dfrac{1}{2}\\y_{max}=\dfrac{5}{2}\end{matrix}\right.\)

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 4 2017 lúc 11:04

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 2 2018 lúc 6:25

Bình luận (0)
PB
Xem chi tiết
CT
1 tháng 6 2017 lúc 11:08

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 5 2019 lúc 16:19

Bình luận (0)
DN
Xem chi tiết
H24
Xem chi tiết
NC
1 tháng 9 2021 lúc 11:33

y = \(\dfrac{sin^2x}{cosx\left(sinx-cosx\right)}+\dfrac{1}{4}\)

y = \(\dfrac{sin^2x}{sinx.cosx-cos^2x}+\dfrac{1}{4}=\dfrac{\dfrac{sin^2x}{cos^2x}}{\dfrac{sinx.cosx}{cos^2x}-1}+\dfrac{1}{4}\)

y = \(\dfrac{tan^2x}{tanx-1}+\dfrac{1}{4}\)

y = \(\dfrac{4tan^2x+tanx-1}{4tanx-4}\). Đặt t =  tanx. Do x ∈ \(\left(\dfrac{\pi}{4};\dfrac{\pi}{2}\right)\) nên t ∈ (1 ; +\(\infty\))\

Ta đươc hàm số f(t) = \(\dfrac{4t^2+t-1}{4t-4}\)

⇒ ymin = \(\dfrac{17}{4}\) khi t = 2. hay x = arctan(2) + kπ 

Bình luận (0)
0D
Xem chi tiết
PB
Xem chi tiết
CT
6 tháng 4 2018 lúc 16:21

Chọn đáp án A

Bình luận (0)
PB
Xem chi tiết
CT
26 tháng 3 2019 lúc 12:34

Đáp án là B

Bình luận (0)