Tìm tọa độ tâm đối xứng của đồ thị hàm số y = x 3 - 3 x + 1
A. (-1;4)
B. (0;2)
C. (1;0)
D. đồ thị không có tâm đối xứng
Tìm tọa độ tâm đối xứng của đồ thị hàm số y=(2x+1)/(x-1)
A. (1;2)
B. (2;1)
C. (1;-1)
D. (-1;1)
Tọa độ tâm đối xứng của đồ thị hàm số y = x - 2 2 x - 1 là
A. - 1 2 ; 2
B. 1 2 ; 1 2
C. 1 2 ; - 1
D. - 1 2 ; 1 2
Chọn B.
Tâm đối xứng của đồ thị hàm số này là giao điểm của 2 đường tiệm cận 1 2 ; 1 2
Tìm tọa độ tâm đối xứng của đồ thị hàm số y = x 3 - 3 x + 1
A. (-1;4)
B. (0;2)
C. (1;0)
D. đồ thị không có tâm đối xứng.
Tìm tọa độ tâm đối xứng của đồ thị hàm số y = 2 x + 1 x - 1 .
A. (1;2)
B. (2;1)
C. (1;-1)
D. (-1;1)
Tìm tọa độ tâm đối xứng của đồ thị hàm số y = x3 +3x2 - 9x +1
A. (-1;6)
B. (-1;12)
C. (1;4)
D. (-3;28)
Đáp án B.
y' = 3x2 + 6x – 9
y’’ = 6x + 6
y’’ = 0 ó x = -1.
Thay x = -1 vào hàm số y = 12
Tìm m để đồ thị hàm số sau nhận gốc tọa độ O làm tâm đối xứng y = x 3 − ( m 2 − 9) x 2 + (m + 3)x + m − 3.
A. m = 3
B. m = 4
C. m = 1
D. m = 2
Trong các hàm số sau có bao nhiêu hàm số có đồ thị nhận gốc tọa độ làm tâm đối xứng:
y = x 2 + 1 ; y = x 5 + x 3 ; y = x ; y = x x 2 + 1 ; y = x 3 + x 2 ; y = x 2 − 2 x + 3 ; y = 3 − x + x + 3 x 2
A. 2
B. 3
C. 1
D. 4
Quan sát đồ thị hàm số \(y = \sin x\) ở Hình 25.
a) Nêu tập giá trị của hàm số \(y = \sin x\)
b) Gốc tọa độ có là tâm đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ của hàm số \(y = \sin x\)
c) Bằng cách dịch chuyển đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) song song với trục hoành sang phải theo đoạn có độ dài \(2\pi \), ta có nhận được đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ {\pi ;3\pi } \right]\) hay không? Hàm số \(y = \sin x\)có tuần hoàn hay không/
d) Tìm khoảng đồng biến, nghịch biến của hàm số \(y = \sin x\)
a) Tập giá trị của hàm số\(y = \sin x\) là \(\left[ { - 1;1} \right]\)
b) Đồ thị hàm số \(y = \sin x\) nhận O là tâm đối xứng.
Như vậy hàm số \(y = \sin x\) là hàm số lẻ.
c) Bằng cách dịch chuyển đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) song song với trục hoành sang phải theo đoạn có độ dài \(2\pi \), ta nhận được đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ {\pi ;3\pi } \right]\)
Như vậy, hàm số \(y = \sin x\) có tuần hoàn .
d) Hàm số \(y = \sin x\) đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\), nghịch biến trên mỗi khoảng \(\left( {\frac{\pi }{2} + k2\pi ;\frac{{3\pi }}{2} + k2\pi } \right)\) với \(k \in Z\)
Quan sát đồ thị hàm số \(y = \cot x\) ở Hình 32.
a) Nêu tập giá trị của hàm số \(y = \cot x\)
b) Gốc tọa độ có là tâm đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ của hàm số \(y = \cot x\)
c) Bằng cách dịch chuyển đồ thị hàm số \(y = \cot x\) trên khoảng \(\left( {0;\pi } \right)\) song song với trục hoành sang phải theo đoạn có độ dài \(\pi \), ta nhận được \(y = \cot x\) trên khoảng \(\left( {\pi ;2\pi } \right)\) hay không? Hàm số \(y = \cot x\) có tuần hoàn hay không?
d) Tìm khoảng đồng biến, nghịch biến của hàm số \(y = \cot x\)
a) Tập giá trị của hàm số \(y = \cot x\)là R
b) Gốc tọa độ là tâm đối xứng của đồ thị hàm số
Hàm số \(y = \cot x\)là hàm số lẻ
c) Bằng cách dịch chuyển đồ thị hàm số \(y = \cot x\) trên khoảng \(\left( {0;\pi } \right)\) song song với trục hoành sang phải theo đoạn có độ dài \(\pi \), ta nhận được \(y = \cot x\) trên khoảng \(\left( {\pi ;2\pi } \right)\)
Hàm số \(y = \cot x\) có tuần hoàn
d) Hàm số \(y = \cot x\)nghịch biến trên mỗi khoảng \(\left( {k\pi ;\pi + k\pi } \right),k \in Z\)