Những câu hỏi liên quan
PB
Xem chi tiết
CT
20 tháng 6 2017 lúc 17:59

Đáp án C.

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 9 2018 lúc 1:54

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 10 2019 lúc 3:26

Chọn D

Bình luận (0)
IC
Xem chi tiết
AH
10 tháng 10 2021 lúc 18:15

1.

\(V=\pi \int ^4_1[x^{\frac{1}{2}}e^{\frac{x}{2}}]^2dx=\pi \int ^4_1(xe^x)dx\)

\(=\pi \int ^4_1xd(e^x)=\pi (|^4_1xe^x-\int ^4_1e^xdx)\)

\(=\pi |^4_1(xe^x-e^x)=\pi (3e^4)=3\pi e^4\) 

 

Bình luận (0)
AH
10 tháng 10 2021 lúc 18:21

2.

\(V=\pi \int ^1_0(x\sqrt{\ln (x^3+1)})^2dx=\pi \int ^1_0x^2\ln (x^3+1)dx\)

\(=\frac{1}{3}\pi \int ^1_0\ln (x^3+1)d(x^3+1)\)

\(=\frac{1}{3}\pi \int ^2_1ln tdt=\frac{1}{3}\pi (|^2_1t\ln t-\int ^2_1td(\ln t))\)

\(=\frac{1}{3}\pi (|^2_1t\ln t-\int ^2_1dt)=\frac{1}{3}\pi |^2_1(t\ln t-t)=\frac{1}{3}\pi (2\ln 2-1)\)

 

 

Bình luận (0)
PB
Xem chi tiết
CT
14 tháng 2 2019 lúc 10:43

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 3 2019 lúc 16:43

Đáp án A

Phương trình hoành độ giao điểm e x = 2 ⇔ x = ln 2  

Suy ra diện tích cần tìm bằng S = ∫ 0 ln 2 e x - 2 d x + ∫ ln 2 0 e x - 2 d x = 4 ln 2 + e - 5 .

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 11 2019 lúc 13:05

Ta có

  x = sin πy ∈ - 1 ; 1 ⇒ x + 1 ≥ 0

Mà  0 ≤ y ≤ 1  nên  y = x + 1 2 ⇔ x = y - 1

Vậy S = ∫ 0 1 sin πy - y + 1 d y =  2 π + 1 3

Đáp án B

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 4 2018 lúc 11:30

Đáp án C

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 4 2019 lúc 17:48

Bình luận (0)