Những câu hỏi liên quan
PB
Xem chi tiết
CT
11 tháng 10 2019 lúc 18:23

Giải sách bài tập Toán 12 | Giải sbt Toán 12

 
Bình luận (0)
PB
Xem chi tiết
CT
1 tháng 12 2019 lúc 16:12

Chọn B.

Bình luận (0)
PB
Xem chi tiết
CT
20 tháng 8 2018 lúc 10:51

Chọn D

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 5 2018 lúc 12:31

x = 1 3 ; y = 3 5

Bình luận (0)
SK
Xem chi tiết
PB
Xem chi tiết
CT
6 tháng 9 2019 lúc 4:26

(2x + y) + (2y - x)i = (x - 2y + 3) + (y + 2x + 1)i

Giải bài 2 trang 133 sgk Giải tích 12 | Để học tốt Toán 12

Bình luận (0)
TT
Xem chi tiết
NT
23 tháng 5 2022 lúc 14:39

\(A=x^4+y^4-2x^3-2x^2y^2+x^2-2y^3+y^2\)

\(A=\left(x^4-2x^2y^2+y^4\right)-2\left(x^3+y^3\right)+\left(x^2+y^2\right)\)

\(A=\left(x^2-y^2\right)^2-2\left(x^3+y^3\right)+\left(x^2+y^2\right)\)

\(A=\left[\left(x-y\right)\left(x+y\right)\right]^2-2\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x^2+y^2\right)\)

\(A=\left(x-y\right)^2-2\left(x^2-xy+y^2\right)+\left(x^2+y^2\right)\)

\(A=x^2-2xy+y^2-2x^2+2xy-2y^2+x^2+y^2\)

\(A=0\)

Bình luận (0)
LQ
Xem chi tiết
H24
Xem chi tiết
TL
18 tháng 8 2020 lúc 20:22

Sửa: \(P=2x^4+x^3\left(2y-1\right)+y^3\left(2x-1\right)+2y^4\); x+y=1

Ta có \(P=2x^4+x^3\left(2y-1\right)+y^3\left(2x-1\right)+2y^4=2x^4+2x^3y-x^3+2xy^3-y^3+2y^4\)

\(=x^3\left(2x+2y\right)+y^3\left(2x+2y\right)-\left(x^3+y^3\right)=\left(2x+2y\right)\left(x^3+y^3\right)-\left(x^3+y^3\right)\)

\(=\left(2x+2y-1\right)\left(x^3+y^3\right)=x^3+y^3\)

Do \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=x^2-xy+y^2=\frac{1}{2}\left(x^2+y^2\right)\left(\frac{x}{\sqrt{2}}-\frac{y}{\sqrt{2}}\right)^2\)

\(\Rightarrow P\ge\frac{1}{2}\left(x^2+y^2\right)\)

Mà \(x+y=1\Rightarrow x^2+y^2+2xy=1\Rightarrow2\left(x^2+y^2\right)-\left(x-y\right)^2=1\)

\(\Rightarrow2\left(x^2+y^2\right)\ge1\Rightarrow\left(x^2+y^2\right)\ge\frac{1}{2}\Rightarrow P\ge\frac{1}{4}\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa