Những câu hỏi liên quan
VN
Xem chi tiết
TL
Xem chi tiết
VQ
20 tháng 11 2015 lúc 7:00

1)

gọi ba số tự nhiên liên tiếp là a;a+1;a+2

ta có :

a+(a+1)+(a+2)=3.a+3=3.(a+1) chia hết cho 3

=>dpcm

2) gọi 5 số tự nhiên liên tiếp đó là a;a+1;a+2a;a+3;a+4

ta có :a+(a+1)+(a+2)+(a+3)+(a+4)=5a+10=5a+2.5=5(a+2) chia hết cho 5

=>dpcm

Bình luận (0)
NK
20 tháng 11 2015 lúc 7:06

Câu hỏi tương tự.

 

Bình luận (0)
TV
Xem chi tiết
RT
24 tháng 2 2016 lúc 17:27

vi p la so nguyen to nen p khong chia het cho 3 

=>p=2k+1 hoac 2k+2

- xet p=2k+1 thi 8p+1=8(2k+1)+1

                                =16k+8+1

                                = 16k+10

                                = 2(8k+5)

vi 2 chia het cho 2 nen 2(8k+8)  chia het cho 2

=>8p+1 la hop so.vo li

=>p khac 2k+1

- xet p=2k+2 thi 4p+1=4(2k+2)+1

                                = 8k+8+1

                                =8k+10

                                 =2(4k+5)

vi 2 chia het cho 2 nen 2(4k+5) chia het cho 2

=>4p+1 la hop so

vay 4p+1 la hop so

Bình luận (0)
VN
Xem chi tiết
NP
25 tháng 12 2014 lúc 9:58

Số nguyên tố lớn hơn 3 sẽ có dạng 3k+1 hay 3k+2  (k thuộc N)

Nếu p=3k+1 thì p+2=3k+1+2=3k+3=3.(k+1) là số nguyên tố. Vì 3.(k+1) chia hết cho 3 nên dạng p=3k+1 không thể có.

Vậy p có dạng 3k+2 (thật vậy, p+2=3k+2+2=3k+4 là 1 số nguyên tố).

=>p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3.

Mặt khác, p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ => p+1 là 1 số chẵn => p+1 chia hết cho 2.

Vì p chia hết cho cả 2 và 3 mà ƯCLN(2,3)=1 nên p+1 chia hết cho 6.

 

Bình luận (0)
PT
6 tháng 4 2016 lúc 11:33

phuong ne 3(k+1)sao la so nguyen to duoc

Bình luận (0)
DD
1 tháng 1 2024 lúc 15:31

p là số nguyên tố lớn hơn 3

=>p không chia hết cho 3

=>p=3k+1;3k+2

xét p=3k+1=>p+2=3k+3=3(k+1) chia hết cho 3

=>p+2 là hợp số(Vô lí)

=>p=3k+2

=>p+1=3k+3=3(k+1)

p là số nguyên tố lớn hơn 3

=>p là số lẻ

=>p+1 là số chẵn

=>p+1 chia hết cho 2

Vì (3;2)=1=>p+1 chia hết cho 6

=>đpcm

Bình luận (0)
NM
Xem chi tiết
NB
Xem chi tiết
DN
Xem chi tiết
HI
7 tháng 1 2018 lúc 16:11

+) Với p=2 thì p= 2+2=4    LÀ HỢP SỐ

                       p=2+4=6     LÀ HỢP SỐ

vậy p=2 loại

+) Với p=3 thì p= 3+2 = 5 là số nguyên tố

                            3+4=7    là số nguyên tố

Vậy p=3 nhận

+) Với p<3 thì p=3k+1 hoặc 3k+2

TH1: p=3k+1 thì p=3k+ 1+ 2=3k+3 chia hết cho 3 và <3 nên p+2 là hợp số

vậy p=3k+ 1 loại

TH2: p=3k+ 2 thì p=3k+2+2=3k+ 4 chia hết cho 2 và <3 nên p+ 2  là hợp số

vậy p=3k+ 2 loại

vậy p = 3 thì p+2 và p+4 là các số nguyên tố

Bình luận (0)
NL
Xem chi tiết
ST
3 tháng 6 2017 lúc 19:35

Vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k + 1 và 3k + 2 (k \(\in\)N*)

- Nếu p = 3k + 1 thì 5p + 1 = 5(3k + 1) + 1 = 15k + 5 + 1 = 15k + 6  \(⋮\) 3 là hợp số (loại)

- Nếu p = 3k + 2 thì 5p + 1 = 5(3k + 2) + 1 = 15k + 10 + 1 = 15k + 11 (thỏa mãn)

=> 7p + 1 = 7(3k + 2) + 1 = 21k + 14 + 1 = 21k + 15 \(⋮\)là hợp số (đpcm)

Bình luận (0)
ST
3 tháng 6 2017 lúc 19:36

sửa dòng cuối: 21k + 15 \(⋮\)3 là hợp số (đpcm)

Bình luận (0)
NM
19 tháng 12 2017 lúc 20:07

mk bổ sung cho st là nếu 15k+11 có thể : 11 khi k =11

Bình luận (0)
ZZ
Xem chi tiết
TH
28 tháng 3 2016 lúc 21:31

1/ *>p=2 thì p^2+2=6(loại vì 6 ko là số nghuyên tố) 
*>p=3thì p^2+2=11(chọn vì 11 là số nghuyên tố) 
=>p^3+2=3^3+2=29 (là số nghuyên tố) 
*>p>3 
vì p là số nguyên tố =>p ko chia hết cho 3 (1) 
p thuộc Z =>p^2 là số chính phương (2) 
từ (1),(2)=>p^2 chia 3 dư 1 
=>p^2+2 chia hết cho 3 (3) 
mặt khác p>3 
=>p^2>9 
=>p^2+2>11 (4) 
từ (3),(4)=>p^2+2 ko là số nguyên tố (trái với đề bài) 

nhầm đề , đây là bài đúng ! ^.^

Bình luận (0)
TH
28 tháng 3 2016 lúc 21:30

1/ *>p=2 thì p^2+2=6(loại vì 6 ko là số nghuyên tố) 
*>p=3thì p^2+2=11(chọn vì 11 là số nghuyên tố) 
=>p^3+2=3^3+2=29 (là số nghuyên tố) 
*>p>3 
vì p là số nguyên tố =>p ko chia hết cho 3 (1) 
p thuộc Z =>p^2 là số chính phương (2) 
từ (1),(2)=>p^2 chia 3 dư 1 
=>p^2+2 chia hết cho 3 (3) 
mặt khác p>3 
=>p^2>9 
=>p^2+2>11 (4) 
từ (3),(4)=>p^2+2 ko là số nguyên tố (trái với đề bài) 
2/ Đặt Q(x)=P(x)-(x+1) 
Q(1999)=P(1999)-(1999+1)=2000-2000=0 
Q(2000)=P(2000)-(2000+1)=2001-2001=0 
=>x-1999,x-2000 là các nghiệm của Q(x) 
Đặt Q(x)=(x-1999)(x-2000).g(x) 
Do P(x) là đa thức bậc 3 có hệ số x^3 là số nguyên khác 0,-1 
=>Q(x) là đa thức bậc 3 có hệ số x^3 là số nguyên khác 0,-1 
=>g(x)có dạng ax+b (a thuộc Z,a khác 0,-1) 
=>Q(x) =(x-1999)(x-2000).( ax+b) 
=>P(x)=(x-1999)(x-2000).( ax+b)+( x+1) 
P(2001)=(2001-1999)(2001-2000) 
(a.2001+b)+(2001+1) 
=2(2001a+b)+2002 
=4002a+2b+2002 
P(1998)= (1998-1999)(1998-2000)(a.1998+b) 
+(1998+1) 
=2(a.1998+b)+1999 
=3996a+2b+1999 
=>P(2001)- P(1998)= 4002a+2b+2002-3996a-2b-1999 
=6a+3 
=3(a+2) 
Do a thuộc Z,a khác -1 
=>a+2 thuộc Z,a+2 khác 1 
=>3(a+2) chia hết cho 3 , 3(a+2) khác 3 
=>3(a+2) là hợp số 
=> P(2001) - P(1998) là hợp số

Bình luận (0)