chứng minh đẳng thức :
a.(b+c)-b.(a+c)-c.(a+b)-2.ac= -2c.(b+a)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh đẳng thức:
a) (a + b) - (-a + b - c) + (c - a - b) = a - b + 2c
a) (a + b) - (-a + b - c) + (c - a - b) = a - b + 2c
a + b - a - b + c + c - a - b = a - b + 2c
= 0 + c + c - a - b
= 2c + a - b
VÌ 2C + a - b = a - b + 2c nên => (a + b) - (-a + b - c) + (c - a - b) = a - b + 2c
(a + b) - (-a + b - c) + (c - a - b) = a - b + 2c
VT VP
VT = (a + b) - (-a + b - c) + (c - a - b)
= a + b + a - b + c + c - a - a - b
= (a + a - a) + [b + (-b) - b] + (c + c)
= a + (-b) + 2c
= a - b + 2c
\(\Rightarrow VT=VP\)
Vậy (a + b) - (-a + b - c) + (c - a - b) = a - b + 2c
Cho a=b=c. Chứng minh các đẳng thức: a)a^4+b^4+c^4=2(a^2b^2+b^2c^2+c^2a^2)=2(ab+bc+ca)^2=(a^2+b^2+c^2)^2/2
Ta có a+b+c=0=>a2+b2+c2+2ab+2bc+2ca=0
=>a2+b2+c2=-2(ab+bc+ca)=>(a2+b2+c2)2=(-2ab-2bc-2ca)2
=>a4+b4+c4+2a2b2+2b2c2+2c2a2=4a2b2+4b2c2+4c2a2+4abc(a+b+c)=4a2b2+4b2c2+4c2a2(Do a+b+c=0)
=>a4+b4+c4= 2(a2b2+b2c2+c2a2)
Chứng minh các đẳng thức sau :
(a + b - c) - (a - b + c) + 2c = 2b
(a - b) . (a - b) = a2 - 2ab + b2
\(\left(a+b-c\right)-\left(a-b+c\right)+2c=2b\)
phân tích vế trái ta có
\(=a+b-c-a+b-c+2c\)
\(=\left(a-a\right)+\left(b+b\right)-\left(c+c\right)+2c\)
\(=2b-2c+2c\)
\(=2b\)( điều phải chứng minh)
\(\left(a-b\right).\left(a-b\right)=a^2-2ab+b^2\)
phân tích vế trái ta có
\(=\left(a-b\right)^2\)
\(=a^2-2ab+b^2\)( sử dụng hằng đẳng thức bình phươgn của 1 hiệu ) ( đpcm)
k nha ^_^
Sao cái thứ 2 lại
( a - b ) ^2 = a^2 - 2ab + b^2 thế
a^2 - 2ab thì = 0 đúng ko
Nhưng còn b^2 thì sao banj giải thích cho mk đc ko đc thì mk k cho
Chứng minh các đẳng thức sau :
A)(a+b)-(-a+b-c)+(c-a-b)=a-b+2c.
B)a(b-c)-a(b+d)=-a(c+d).
a) ( a + b ) - ( -a + b - c ) + ( c - a - b )
= a + b + a - b + c + c - a - b
= a - b + 2c ( đpcm )
b) a ( b - c ) - a ( b + d )
= a ( b - c - b - d )
= a ( -c - d )
= -a ( c + d ) ( đpcm )
chứng minh bất đẳng thức: \(a\left(a+b\right)\left(a+c\right)\left(a+b+c\right)+b^2c^2\ge0\)
Lời giải:
BĐT tương đương với \((a^2+ab+ac)(a^2+ac+ab+bc)+b^2c^2\geq 0\)
Đặt \(a^2+ab+ac=t\)
BĐT cần chứng minh \(\Leftrightarrow t(t+bc)+b^2c^2=(t-\frac{bc}{2})^2+\frac{3b^2c^2}{4}\geq 0\)
Luôn đúng vì bình phương của một số thực luôn là số không âm
Dấu bằng xảy ra khi \(2(a^2+ab+ac)=bc\) và \(bc=0\)
chứng minh bất đẳng thức
\(\frac{a^2c}{b}+\frac{b^2a}{c}+\frac{c^2b}{a}\ge a^2+b^2+c^2\\ \) với a,b,c là ác số thức dương
Chứng minh bất đẳng thức
\(^{a^8+b^8+c^8\ge a^2b^2c^2\left(ab+ac+bc\right)}\)
Ta có:
\(a^8+b^8+c^8\ge a^4b^4+b^4c^4+c^4a^4\)
\(\ge a^4b^2c^2+b^4c^2a^2+c^4a^2b^2=a^2b^2c^2\left(a^2+b^2+c^2\right)\)
\(\ge a^2b^2c^2\left(ab+bc+ca\right)\)
Cái bất đẳng thức áp dụng trong bài là:
\(x^2+y^2+z^2\ge xy+yz+zx\)
ĐẶt 2^a = x; 2^b=y; 2^c=z;=> x;y;z>0
dpcm<=> x^3+y^3+z^3 ≥x+y+z và xyz = 2^a.2^b.2^c =2^(a+b+c)=1
Ta có: x^3+y^3 = (x+y)(x²+y²-xy).Vì x²+y² ≥ 2xy => x^3+y^3 ≥xy(x+y)
Tương tự ta có: y^3+z^3≥ yz(y+z)
z^3+ x^3≥ xz(x+z)
Cộng vế với vế ta có:
2(x^3+y^3+z^3) ≥ x²y+ xy² + y²z+yz²+x²z+xz²
Cộng 2 vế với x^3+y^3 +z^3 ta có:
3(x^3+y^3+z^3) ≥ x²(x+y+z) + y²(x+y+z) + z²(x+y+z) = (x+y+z)(x²+y²+z²) (*)
Theo cô si ta có:
x²+y²+z² ≥3.(x².y².z²)^1/3 = 3 (vì xyz=1)
=> 3(x^3+y^3+z^3) ≥ 3(x+y+z)
=> x^3+y^3+z^3 ≥ x+y+z
=> dpcm
Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.
Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599
= (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )
=(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )
= ( 1 + 5 + 52)(1 + 53+....+597)
= 31(1 + 53+....+597)
Vì có một thừa số là 31 nên A chia hết cho 31.
P/s Đừng để ý câu trả lời của mình
chứng minh đẳng thức: - (a - 3b - c) - (2a + b + c) = (5a - 4b +2c) - (8a - 6b +2c)