Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
PB
Xem chi tiết
CT
20 tháng 6 2017 lúc 17:20

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 2 2017 lúc 10:22

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Vì 3π/4 < a < π nên tan a < 0. Vậy tan a = (-1)/2. Đáp án là D.

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 11 2017 lúc 3:42

Đáp án: D.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Trên khoảng (0; π/2), sin(x + π/4) ≤ 1;

Dấu "=" xảy ra ⇔ x = π/4

Suy ra giá trị nhỏ nhất của hàm số là min y = y(π/4) = 2 /2.

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 3 2019 lúc 2:01

Đáp án: D.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Trên khoảng (0; π /2), sin(x +  π /4) ≤ 1;

Dấu "=" xảy ra ⇔ x =  π /4

Suy ra giá trị nhỏ nhất của hàm số là min y = y( π /4) =  2 /2.

Bình luận (0)
PB
Xem chi tiết
CT
20 tháng 5 2018 lúc 9:01

Với π/2 < a < 3π/4 thì cosa < 0. Ta có

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Đáp án là D.

Bình luận (0)
MT
Xem chi tiết
PB
Xem chi tiết
CT
24 tháng 7 2019 lúc 12:22

Thể tích nửa hình cầu là: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Thể tích hình nón là : Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tổng thể tích của hai hình: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy chọn đáp án B

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 12 2019 lúc 7:24

Quan sát đồ thị hàm số y = tan x trên đoạn [-π; 3π/2].

Giải bài 1 trang 17 sgk Đại số 11 | Để học tốt Toán 11

a. tan x = 0 tại các giá trị x = -π; 0; π.

(Các điểm trục hoành cắt đồ thị hàm số y = tanx).

b. tan x = 1 tại các giá trị x = -3π/4; π/4; 5π/4.

Giải bài 1 trang 17 sgk Đại số 11 | Để học tốt Toán 11

c. tan x > 0 với x ∈ (-π; -π/2) ∪ (0; π/2) ∪ (π; 3π/2).

(Quan sát hình dưới)

Giải bài 1 trang 17 sgk Đại số 11 | Để học tốt Toán 11

d. tan x < 0 khi x ∈ [-π/2; 0) ∪ [π/2; π)

(Quan sát hình dưới).

Giải bài 1 trang 17 sgk Đại số 11 | Để học tốt Toán 11

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 3 2018 lúc 2:17

a) Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) > 0 trên khoảng (-4; 0) và f’(x) < 0 trên khoảng (0; 4).

Hàm số đạt cực đại tại x = 0 và f C Đ  = 5

Mặt khác, ta có f(-4) = f(4) = 3

Vậy Giải sách bài tập Toán 12 | Giải sbt Toán 12

d) f(x) = | x 2  − 3x + 2| trên đoạn [-10; 10]

Khảo sát sự biến thiên và vẽ đồ thị của hàm số g(x) = x 2  – 3x + 2.

Ta có:

g′(x) = 2x − 3; g′(x) = 0 ⇔ x = 3/2

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên ta có đồ thị f(x) như sau:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đồ thị suy ra: min f(x) = f(1) = f(2) = 0; max = f(x) = f(−10) = 132

e) Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) < 0 nên và f’(x) > 0 trên (π/2; 5π/6] nên hàm số đạt cực tiểu tại x = π/2 và f C T  = f(π/2) = 1

Mặt khác, f(π/3) = 2√3, f(5π/6) = 2

Vậy min f(x) = 1; max f(x) = 2

g) f(x) = 2sinx + sin2x trên đoạn [0; 3π/2]

f′(x) = 2cosx + 2cos2x = 4cos(x/2).cos3(x/2)

f′(x) = 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: f(0) = 0,

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó ta có: min f(x) = −2 ; max f(x) = 3√3/2

Bình luận (0)