Tìm tập hợp các số nguyên n để A = 3 n − 5 n + 4 có giá trị là số nguyên.
A. n∈{13}
B. n∈{−21;−5;−3;13}
C. n∈{−17;−1;1;17}
D. n∈{−13;−3;3;13}
1.Chứng minh rằng với n thuộc tập hợp số tự nhiên khác 0 , các phân số sau là các phân số tối giản :
a) 3n-2/4n-3
b) 4n+1/6n+1
2.Cho B=n/n-4
Tìm n thuộc tập hợp các số nguyên để B có giá trị nguyên
3.Cho C=2n+7/n+3
Tìm n thuộc tập hợp các số nguyên để C có giá trị nguyên
Lưu ý : Các bạn giải giúp mình ghi rõ cách giải ra nhé
Tìm tập hợp các số nguyên n để A = 6 n + 3 2 n − 1 có giá trị là số nguyên.
A. n∈{1}
B. n∈{−1;−2;0;1}
C. n∈{−1;1;7}
D. n∈{−1;0;1;2}
Đáp án cần chọn là: D
A = 6 n + 3 2 n − 1 = 6 n − 3 + 6 2 n − 1 = 6 n − 3 2 n − 1 + 6 2 n − 1 = 3 ( 2 n − 1 ) 2 n − 1 + 6 2 n − 1 = 3 + 6 2 n − 1
Vì n∈Z nên để A∈Z thì 2n−1∈U(6) = {±1;±2;±3;±6}
Ta có bảng:
Vậy n∈{−1;0;1;2}
tìm n thuộc tập hợp các số nguên để A= n+1/ n-2 (n không bằng 2) có giá trị nguyên là
\(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)
Mà để A nguyên thì \(\frac{3}{n-2}\)nguyên
\(\Rightarrow3⋮n-2\)
\(\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm3;\pm1\right\}\Leftrightarrow n\in\left\{\pm1;3;5\right\}\)
Vậy ......
hihi mik chẳng hiểu gì cả cậu có thể giải thích dễ hiểu hơn ko
tìm các số nguyên n để phân số A =\(\frac{n+3}{n-2}\)nhận giá trị trong tập hợp số nguyên
ta có: n+ 3 = n - 2 + 5
để \(\frac{n+3}{n-2}\)có giá trị là số nguyên thì n + 2 \(⋮\) n - 2.
\(\Rightarrow\)n -2 + 5 \(⋮\)n - 2 mà n-2\(⋮\) n -2 nên 5\(⋮\)n - 2
do đó n - 2
mà Ư(5) = {1;-1;5;-5}
Xét các trường hợp :
1. nếu n-2 = 1 thì n= 3
2. nếu n-2 = -1 thì n = 1
3. nếu n-2 = 5 thì n= 7
4. nếu n-2 = -5 thì n= -3
vậy n \(\in\){3;1;-3;7} để \(\frac{n+3}{n-2}\)
\(A=\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=1+\frac{5}{n-2}\)
Để \(A\in Z\Leftrightarrow5⋮n-2\)
\(\Leftrightarrow n-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow\)Ta có bảng giá trị
\(n-2\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(n\) | \(3\) | \(1\) | \(8\) | \(-3\) |
Vậy, \(A\in Z\)khi \(n\in\left\{-3;1;3;8\right\}\)
Tập hợp các số tự nhiên n để A=2n+5/n+1 có giá trị là số nguyên là { }
Để A có giá trị nguyên thì
\(2n+5⋮n+1\)
\(\Rightarrow n+1⋮n+1\)
\(\Rightarrow2\left(n+1\right)⋮n+1\)
\(\Rightarrow2n+2⋮n+1\)
\(\Rightarrow\left[\left(2n+5\right)-\left(2n+2\right)\right]⋮n+1\)
\(\Rightarrow\left[2n+5-2n-2\right]⋮n+1\)
\(\Rightarrow3⋮n+1\)
\(\Rightarrow n+1\inƯ\left(3\right)\)
\(\Rightarrow n+1\in\left[1;3;-1;-3\right]\)
Xét \(n+1=1\Rightarrow n=0\)( thỏa mãn )
Xét \(n+1=3\Rightarrow n=2\)( thỏa mãn )
Xét \(n+1=-1\Rightarrow n=-2\)( loại vì n là số tự nhiên )
Xét \(n+1=-3\Rightarrow n=-4\)( loại vì n là số tự nhiên )
Vậy \(n\in\left[0;2\right]\)
Tập hợp các số nguyên n để n bằng n/3+n có giá trị là số nguyên S = {...}
Ta có : n chia hết cho 3 + n
Suy ra : n chia hết cho 3
=> n thuộc B(3) = {....................-3;-6;-9;0;3;6;9;................}
ta có : \(\frac{n}{3+n}=\frac{\left(3+n\right)-3}{3+n}\)
vì \(\left(3+n\right)⋮\left(3+n\right)\)để \(\frac{\left(3+n\right)-3}{3+n}\)nguyên \(\Leftrightarrow-3⋮\left(3+n\right)\Leftrightarrow\left(3+n\right)\inƯ\left(-3\right)\)
\(\RightarrowƯ\left(-3\right)=1;-1;3;-3\)
\(\Rightarrow3+n=1\Rightarrow n=-2\)
\(\Rightarrow3+n=-1\Rightarrow n=-4\)
\(\Rightarrow3+n=3\Rightarrow n=0\)
\(\Rightarrow3+n=-3\Rightarrow n=-6\)
Tập hợp các giá trị tự nhiên của n để phân thức (n4-2n3+5)/(n-2) có các giá trị nguyên là bao nhiêu?
\(\left(n^4-2n^3+5\right)=n^3\left(n-2\right)+5\) chia hết cho n -2
=> 5 chia hết cho n -2
n-2 thuộc U(5) = {1;5}
=> n thuộc { 3;7}
Vậy tập hợp có 2 phần tử
Tập hợp các số nguyên n để n/n + 3 có giá trị là số nguyên là S={...}
1/ Cho phân số B =4/n-3. n thuộc Z
a) Số nguyên n phải có điều kiện gì để phân số B tồn tại?
b) Tìm phân số B biết n=0; n=10; n= -2
2/ Viết tập hợp A các số nguyên n sao cho phân số 32/n có giá trị bằng một số nguyên
3/ Tìm số n thuộc Z để phân số 2n+15/n+1 là số nguyên
4/ Tìm số nguyên x biết
a) x+3/15=-1/3
b) 1/2=x+3/8
5/ C ho a/b=-c/d. CMR
a) a/b=a+c/b+d
b) a+b/c+d=a/c
dấu / có nghĩa là phần
5/a,
ta cần c/m: a/b=a +c/b+d
<=> a(b+d) = b(a+c)
ab+ad = ba+bc
ab-ba+ad=bc
ad=bc
a/b=c/d
vậy đẳng thức được chứng minh
b, Tương tự