Tính hợp lí: C = 1 21 + 1 77 + 1 165 + 1 285 + 1 437 + 1 621
Tính hợp lí:
a) A = \(\dfrac{1}{56}\) + \(\dfrac{1}{72}\) + \(\dfrac{1}{90}\) + \(\dfrac{1}{110}\) + \(\dfrac{1}{132}\) + \(\dfrac{1}{156}\) ;
b) B = \(\dfrac{4}{21}\) + \(\dfrac{4}{77}\) + \(\dfrac{4}{165}\) + \(\dfrac{4}{285}\) +\(\dfrac{4}{437}\) +\(\dfrac{4}{621}\);
c) C = \(\dfrac{1}{21}\) + \(\dfrac{1}{77}\) +\(\dfrac{1}{165}\) +\(\dfrac{1}{285}\) +\(\dfrac{1}{437}\) +\(\dfrac{1}{621}\) ;
d) D = \(\dfrac{1}{1.6}\) + \(\dfrac{1}{6.11}\) +\(\dfrac{1}{11.16}\) +\(\dfrac{1}{16.21}\) +\(\dfrac{1}{26.31}\) .
Giải:
a)A=1/56+1/72+1/90+1/110+1/132+1/156
A=1/7.8+1/8.9+1/9.10+1/10.11+1/11.12+1/12.13
A=1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11+1/11-1/12+1/12-1/13
A=1/7-1/13
A=6/91
b)B=4/21+4/77+4/165+4/285+4/437+4/621
B=4/3.7+4/7.11+4/11.15+4/15.19+4/19.23+4/23.27
B=1/3-1/7+1/7-1/11+1/11-1/15+1/15-1/19+1/19-1/23+1/23-1/27
B=1/3-1/27
B=8/27
c) C=1/21+1/77+1/165+1/285+1/437+1/621
C=1/3.7+1/7.11+1/11.15+1/15.19+1/19.23+1/23.27
C=1/4.(4/3.7+4/7.11+4/11.15+4/15.19+4/19.23+4/23.27)
C=1/4.(1/3-1/7+1/7-1/11+1/11-1/15+1/15-1/19+1/19-1/23+1/23-1/27)
C=1/4.(1/3-1/27)
C=1/4.8/27
C=2/27
d) D=1/1.6+1/6.11+1/11.16+1/16.21+1/21.26+1/26.31
D=1/5.(5/1.6+5/6.11+5/11.16+5/16.21+5/21.26+5/26.31)
D=1/5.(1/1-1/6+1/6-1/11+1/11-1/16+1/16-1/21+1/21-1/26+1/26-1/31)
D=1/5.(1/1-1/31)
D=1/5.30/31
D=6/31
Nếu câu d cậu viết thiếu thì làm như vầy nhé!
Chúc bạn học tốt!
Nếu như câu d ko chép sai thì làm thế này nha:
d) D=1/1.6+1/6.11+1/11.16+1/16.21+1/26.31
D=1/5.(5/1.6+5/6.11+5/11.16+5/16.21)+1/806
D=1/5.(1/1-1/6+1/6-1/11+1/11-1/16+1/16-1/21)+1/806
D=1/5.(1/1-1/21)+1/806
D=1/5.20/21+1/806
D=4/21+1/806
D=3245/16926
Chúc bạn học tốt!
C = 1/21+1/77+1/165+1/285+1/437+1/621
chứng tỏ C < 4/27
\(C=\dfrac{1}{21}+\dfrac{1}{77}+\dfrac{1}{165}+\dfrac{1}{285}+\dfrac{1}{437}+\dfrac{1}{621}\)
\(C=\dfrac{1}{3.7}+\dfrac{1}{7.11}+\dfrac{1}{11.15}+\dfrac{1}{15.19}+\dfrac{1}{19.23}+\dfrac{1}{23.27}\)
\(C=\dfrac{4}{4}.\left(\dfrac{1}{3.7}+\dfrac{1}{7.11}+\dfrac{1}{11.15}+\dfrac{1}{15.19}+\dfrac{1}{19.23}+\dfrac{1}{23.27}\right)\) \(C=\dfrac{1}{4}.\left(\dfrac{4}{3.7}+\dfrac{4}{7.11}+\dfrac{4}{11.15}+\dfrac{4}{15.19}+\dfrac{4}{19.23}+\dfrac{4}{23.27}\right)\) \(C=\dfrac{1}{4}.\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{27}\right)\) \(C=\dfrac{1}{4}.\left(\dfrac{1}{3}-\dfrac{1}{27}\right)\)
\(C=\dfrac{1}{4}.\left(\dfrac{9}{27}-\dfrac{1}{27}\right)\)
\(C=\dfrac{1}{4}.\dfrac{8}{27}=\dfrac{2}{27}\)
Mà \(\dfrac{2}{27}< \dfrac{4}{27}\) hay \(C< \dfrac{4}{27}\)
\(\Rightarrow C< \dfrac{4}{27}\) ( điều phải chứng tỏ )
Tính A biết :\(A=\frac{1}{21}+\frac{1}{77}+\frac{1}{165}+\frac{1}{285}+\frac{1}{437}\)
A = \(\frac{1}{21}+\frac{1}{77}+\frac{1}{165}+\frac{1}{285}+\frac{1}{437}\)
A = \(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+\frac{1}{15.19}+\frac{1}{19.23}\)
A = \(\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}\right)+\frac{1}{4}.\left(\frac{1}{7}-\frac{1}{11}\right)+\frac{1}{4}.\left(\frac{1}{11}-\frac{1}{15}\right)+\frac{1}{4}.\left(\frac{1}{15}-\frac{1}{19}\right)+\frac{1}{4}.\left(\frac{1}{19}-\frac{1}{23}\right)\)
A = \(\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}\right)\)
A = \(\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{23}\right)\)
A = \(\frac{1}{4}.\frac{20}{69}\)
A = \(\frac{5}{69}\)
B=1/21+1/77+1/165+1/285+1/437+1/621
1. Tính hợp lí nếu có thể :
a) 125 + 80 + 375 + 220
b) 25.11.8.4.125
c) 18.74 + 18.27 - 18
d) 75 . 23 + 75 . 77 - 500
e) 150 : [25.(18-42)]
f) 125 . 23 . 2 . 8 . 50
g) 235 + 88 + 165 + 12
h) 71 . 32 + 71 . 68 - 1100
i) 67 : 66 + 43 .2 - 240
j) 546 - 6. [158 : (30 + 72)]
k) 268 + 147 + 132 + 253
2. Tìm số tự nhiên x, biết :
a) 7 . x = 707
b) 6x + 5 = 47
c) 35 : (x+1) = 7
d) 12 + (29 - 3x) = 35
e) 2.4x + 101 = 138
f) 7 . x = 140
g) 7 . (15 - x) + 14 = 84
h) 3x . 5 - 15 = 390
3. Tìm số tự nhiên n , biết :
(n+11) chia hết cho (n+1)
1.
a) \(125+80+375+220\)
\(=\left(125+375\right)+\left(80+220\right)\)
\(=500+300\)
\(=800\)
b) \(25.11.8.4.125\)
\(=\left(25.4\right).\left(8.125\right).11\)
\(=100.1000.11\)
\(=1100000\)
c) \(18.74+18.27-18\)
\(=18.\left(74+27-1\right)\)
\(=18.100\)
\(=1800\)
d) \(75.23+75.77-500\)
\(=75.\left(23+77\right)-500\)
\(=75.100-500\)
\(=7500-500\)
\(=7000\)
e) \(150:\left[25.\left(18-4^2\right)\right]\)
\(=150:\left[25.\left(18-16\right)\right]\)
\(=150:\left[25.2\right]\)
\(=150:50\)
\(=3\)
f) \(125.23.2.8.50\)
\(=\left(125.8\right).\left(2.50\right).23\)
\(=1000.100.23\)
\(=2300000\)
g) \(235+88+165+12\)
\(=\left(235+165\right)+\left(88+12\right)\)
\(=400+100\)
\(=500\)
h) \(71.32+71.68-1100\)
\(=71.\left(32+68\right)-1100\)
\(=71.100-1100\)
\(=7100-1100\)
\(=6000\)
i) \(6^7:6^6+4^3.2-24^0\)
\(=6+64.2-1\)
\(=6+128-1\)
\(=133\)
j) \(546-6.\left[158:\left(30+7^2\right)\right]\)
\(=546-6.\left[158:\left(30+49\right)\right]\)
\(=546-6.\left[158:79\right]\)
\(=546-6.2\)
\(=546-12\)
\(=534\)
k) \(268+147+132+253\)
\(=\left(268+132\right)+\left(147+253\right)\)
\(=400+400\)
\(=800\)
2.
a) \(7x=707\)
\(x=707:7\)
\(x=101\)
b) \(6x+5=47\)
\(6x=47-5\)
\(6x=42\)
\(x=42:6\)
\(x=7\)
c) \(35:\left(x+1\right)=7\)
\(x+1=35:7\)
\(x+1=5\)
\(x=5-1\)
\(x=4\)
d) \(12+\left(29-3x\right)=35\)
\(29-3x=35-12\)
\(29-3x=23\)
\(3x=29-23\)
\(3x=6\)
\(x=6:3\)
\(x=2\)
e) \(2.4^x+10^1=138\)
\(2.4^x=138-10\)
\(2.4^x=128\)
\(4^x=128:2\)
\(4^x=64=4^3\)
\(\Rightarrow x=3\)
f) \(7x=140\)
\(x=140:7\)
\(x=20\)
g) \(7\left(15-x\right)+14=84\)
\(7\left(15-x\right)=84-14\)
\(7\left(15-x\right)=70\)
\(15-x=70:7\)
\(15-x=10\)
\(x=15-10\)
\(x=5\)
h) \(3^x.5-15=390\)
\(3^x.5=390+15\)
\(3^x.5=405\)
\(3^x=405:5\)
\(3^x=81=3^4\)
\(\Rightarrow x=4\)
3.
Ta có:
\(\Rightarrow n+11⋮n+1\)
\(\Rightarrow n+1+10⋮n+1\)
\(\Rightarrow10⋮n+1\) hay \(n+1\inƯ\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)
\(\Rightarrow\) \(n\in\left\{-11;-6;-3;-2;0;1;4;9\right\}\)
Vì \(n\in N\) nên \(n\in\left\{0;1;4;9\right\}\)
Tìm n thuộc N*, biết rằng 1/21 + 1/77 + 1/165 + ... + 1/n^2+4n = 56/673
Ta có 1n2+4n=14(1n−1n+4)1n2+4n=14(1n−1n+4) Khi đó pt tương đương: 14(13−17+17−111+...+1n−1n+4)=5667314(13−17+17−111+...+1n−1n+4)=56673 ⟺13−1n+4=224673=>n=2015
- Tìm n thuộc N* biết rằng: 1/21 + 1/77 + 1/165 +...+ 1/n^2+4n = 56/673
tìm n thuộc N* biết rằng 1/21+1/77+1/165+...+1/n^2+4n=56/673
Giúp mình giải bài toán này với. Mình cám ơn.
Tính nhanh: B = 5/21 + 5/77 + 5/165 + ...+ ( 5/ (4n-1)(4n+3)
\(B=\frac{5}{21}+\frac{5}{77}+\frac{5}{165}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)
\(\frac{1}{5}B=\frac{1}{21}+\frac{1}{77}+\frac{1}{165}+...+\frac{1}{\left(4n-1\right)\left(4n+3\right)}\)
\(B-\frac{1}{5}B=\frac{5}{21}+\frac{5}{77}+\frac{5}{165}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}-\frac{1}{21}+\frac{1}{77}+\frac{1}{165}+...+\)\(\frac{1}{\left(4n-1\right)\left(4n+3\right)}\)
\(\frac{4}{5}B=\frac{4}{21}+\frac{4}{77}+\frac{4}{165}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\)
\(\frac{4}{5}B=\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+\frac{4}{11\cdot15}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\)
\(\frac{4}{5}B=\frac{4}{3}-\frac{4}{7}+\frac{4}{7}-\frac{4}{11}+\frac{4}{11}-\frac{4}{15}+...+\frac{4}{4n-1}-\frac{4}{4n+3}\)
\(\frac{4}{5}B=\frac{4}{3}-\frac{4}{4n-3}\)
\(\frac{4}{5}B=\frac{16n-24}{12n-9}\)
\(B=\frac{\frac{16n-24}{12n-9}}{\frac{4}{5}}\)
\(B=\frac{20n-30}{12n-9}\)
B = \(\frac{5}{21}+\frac{5}{77}+\frac{5}{165}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)
\(=\frac{5}{3.7}+\frac{5}{7.11}+\frac{5}{11.15}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)
\(=\frac{5}{4}.\left(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\)
\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{4n-1}+\frac{1}{4n+3}\right)\)
\(=\frac{5}{4}.\left(\frac{1}{3}-\frac{1}{4n+3}\right)=\frac{5}{12}-\frac{5}{4\left(4n+3\right)}=\frac{5}{12}-\frac{5}{16n+12}\)
sửa lại
\(\frac{4}{5}B=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{4n-1}-\frac{1}{4n+3}\)
\(\frac{4}{5}B=\frac{1}{3}-\frac{1}{4n+3}\)
\(\frac{4}{5}B=\frac{4n}{12n+9}\)
\(B=\frac{\frac{4n}{12n+9}}{\frac{4}{5}}\)
\(B=\frac{5n}{12n+9}\)
Tính :
6/21 + 6/77 + 6/165 + 6/285
giúp mình với
người nào làm xong đầu tiên mình sẽ cho 1 like cho người đó.