Chứng minh các phân thức sau luôn xác định với mọi x
x 2 + 2 x + 3 - 12 + 6 x - x 2
Chứng minh các phân thức sau luôn xác định với mọi x
2 x + 3 8 x - 18 - x 2
1/ Chứng minh đa thức sau luôn dương với mọi x:
x2 - x + 1
2/ Chứng minh các đa thức sau luôn âm với mọi x:
a) (x - 3)(1 - x) - 2
b) (x + 4)(2 - x) - 10
\(1,x^2-x+1=x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0=>\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\) (với mọi x)
Vậy ........
\(2,a,\left(x-3\right)\left(1-x\right)-2=x-x^2-3+3x-2=-x^2+4x-5=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+4+1\right)=-\left(x^2-2.x.2+2^2+1\right)=-\left[\left(x-2\right)^2+1\right]=-1-\left(x-2\right)^2\)
Vì \(\left(x-2\right)^2\ge0=>-\left(x-2\right)^2\le0=>-1-\left(x-2\right)^2\le-1< 0\) (với mọi x)
Vậy........
\(b,\left(x+4\right)\left(2-x\right)-10=2x-x^2+8-4x-10=-x^2-2x-2=-\left(x^2+2x+2\right)=-\left(x^2+2x+1+1\right)\)
\(=-\left(x^2+2.x.1+1^2+1\right)=-\left(x+1\right)^2+1=-1-\left(x+1\right)^2\le-1< 0\) (với mọi x)
Vậy.......
Chứng minh rằng biểu thức A=(8x/(9x^2-4)-2x/(3x+2))/-[6/(9x^2-4)]+2 luôn dương với mọi x thuộc tập xác định.
1. Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến: a) -9*x^2 + 12*x -15 b) -5 – (x-1)*(x+2)
2. Chứng minh các biểu thức sau luôn có giá trị dương với mọi giá trị của biến: a) x^4 +x^2 +2 b) (x+3)*(x-11) + 2003
3. Tính a^4 +b^4 + c^4 biết a+b+c =0 và a^2 +b^2 +c^2 = 2
Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến:
a) 9x^2+12x-15
=-(9x^2-12x+4+11)
=-[(3x-2)^2+11]
=-(3x-2)^2 - 11.
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x.
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x.
b) -5 – (x-1)*(x+2)
= -5-(x^2+x-2)
=-5- (x^2+2x.1/2 +1/4 - 1/4-2)
=-5-[(x-1/2)^2 -9/4]
=-5-(x-1/2)^2 +9/4
=-11/4 - (x-1/2)^2
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x.
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x.
Bài 2)
a) x^4+x^2+2
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x
suy ra x^4+x^2+2 >=2
Hay x^4+x^2+2 luôn dương với mọi x.
b) (x+3)*(x-11) + 2003
= x^2-8x-33 +2003
=x^2-8x+16b + 1954
=(x-4)^2 + 1954 >=1954
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến
1/ \(-9x^2+12x-15=\left(-9x^2+2.2.3x-4\right)-11\)
\(=-11-\left(3x-2\right)^2\le-11< 0\)
Câu b và câu 2 tương tự
chứng minh rằng các biểu thức sau luôn luôn dương với mọi x
A = x (x - 6) + 10
B = x2 - 2x + 9y2 - 6y + 3
+) \(A=x\left(x-6\right)+10\)
\(A=x^2-6x+10\)
\(A=x^2-6x+9+1\)
\(A=\left(x-3\right)^2+1\ge1\)
Vậy.....
+) \(B=x^2-2x+9y^2-6y+3\)
\(B=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)
\(B=\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1\)
Vậy .....
thanks bạn nhìu
A = x( x - 6 ) + 10
A = x2 - 6x + 10
A = ( x2 - 6x + 9 ) + 1
A = ( x - 3 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )
B = x2 - 2x + 9y2 - 6y + 3
B = ( x2 - 2x + 1 ) + ( 9y2 - 6y + 1 ) + 1
B = ( x - 1 )2 + ( 3y - 1 )2 + 1 ≥ 1 > 0 ∀ x, y ( đpcm )
\(f,F=x^2+9y^2-8x+4y+27\) (sửa đề)
\(=\left(x^2-8x+16\right)+\left(9y^2+4y+\dfrac{4}{9}\right)+\dfrac{95}{9}\)
\(=\left(x^2-2\cdot x\cdot4+4^2\right)+\left[\left(3y\right)^2+2\cdot3y\cdot\dfrac{2}{3}+\left(\dfrac{2}{3}\right)^2\right]+\dfrac{95}{9}\)
\(=\left(x-4\right)^2+\left(3y+\dfrac{2}{3}\right)^2+\dfrac{95}{9}\)
Ta thấy: \(\left(x-4\right)^2\ge0\forall x\)
\(\left(3y+\dfrac{2}{3}\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-4\right)^2+\left(3y+\dfrac{2}{3}\right)^2\ge0\forall x;y\)
\(\Rightarrow\left(x-4\right)^2+\left(3y+\dfrac{2}{3}\right)^2+\dfrac{95}{9}\ge\dfrac{95}{9}>0\forall x;y\)
hay \(F\) luôn dương với mọi \(x;y\).
\(Toru\)
Cho phân thức \(\frac{3x^3+6x^2}{x^3+x^2+x+2}\)
a) Tìm điều kiện của x để giá trị của phân thức được xác định
b) Chứng tỏ rằng giá trị của phân thức luôn luôn không âm khi nó được xác định
Chứng minh các biểu thức sau xác định với mọi giá trị của x:
a) A = 5 − 7 x x 2 + x + 1 − 7 3 ; b) B = x + 10 4 x 2 + 2 x + 3 − x 2 + 4 2 .
chứng minh các biểu thức sau luôn âm với mọi giá trị của x
-x^2-1
-(x+1)^2
-(x+1)^2-3
chứng minh nó luôn bé hơn 0!!!
675675867876896978987985685686586
a)-x2 -1=-(x2+1)
Vì x2 >= 0 nên x2 +1>0 nên -(x2+1)<0 hay -x2 -1<0
b)Vì (x+1)2 >=0 nên -(x+1)2 <=0. Phần này biểu thức bằng 0 với giá trị x=1 chứ không thể luôn âm được.
c)Theo b) -(x+1) <=0 nên -(x+1)2 -3<0