1/15 + 1/35 + 1/63 + 1/99 + ....................................+ 1/9999
1\15+1\35+1\63=1\99+.....1\9999
1/(3x5) + 1/(5x7) + 1/(7x9) + 1/(9x11)+... + 1/(99x101)
(1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+...+1/99-1/101) : 2
(1/3 - 1/101) : 2 = 98/303 : 2
49/303
Bạn đưa về dãy tổng
\(\frac{1}{3.5}+\frac{1}{5.7}+.....+\)
Có thể tính nhanh vì đây là dãy đặc biệt
\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{9999}\)
= \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{99.101}\)
= \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{99}-\frac{1}{101}\)
Sau khi lược bỏ các phân số ( phân số cộng với nhau bằng 0 coi như là không cộng)
Ta còn : \(\frac{1}{3}-\frac{1}{101}\)=\(\frac{98}{303}\)
Đáp số: \(\frac{98}{303}\)
1/15+1/35+1/63+1/99+...+1/9999=
A = 1/15 + 1/35 + 1/ 63 + 1/99 + ...+ 1/9999
A = 1/(3x5) + 1/(5x7) + 1/(7x9) + 1/(9x11) + ... + 1/(99 x 101)
Ax2 = 2/(3x5) + 2/(5x7) + 2/(7x9) + 2/(9x11) + ... + 2/(99 x 101)
Ax2 = 1/3 – 1/5 + 1/5 – 1/7 + 1/7 – 1/9 + 1/9 – 1/11 + ...+ 1/99 – 1/101
Ax2 = 1/3 – 1/101 = 98/303
A = 98/303 : 2
A = 49/303
1/15 + 1/35 + 1/63 +1/99 + ........ + 1/9999 = ?
1/15+1/35+1/63+1/99+.....1/9999
1/15+1/35+1/63+1/99+..................+1/9999
49/303
nếu muốn giải hẳn ra thì phải tick 2 lần đó nhe !
1/15+1/35+1/63+1/99+...1/9999
\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{9999}=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)=\frac{1}{2}.\frac{98}{303}=\frac{49}{303}\)
1/15/+ 1/35 + 1/63+ 1/99+ ...+1/9999
\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{9999}\)
\(=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...-\frac{1}{101}\)
\(=\frac{1}{3}-\frac{1}{101}=\frac{98}{303}\)
A=[1/15+1/35+1/63+1/99+...+1/9999]
\(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+....+\frac{1}{9999}\)
\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+....+\frac{1}{99.101}\)
\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+....+\frac{1}{99}-\frac{1}{101}\)
\(A=\frac{1}{3}-\frac{1}{101}=\frac{98}{303}\) (vì tất cả các phân số khác ngoài 1/3 và 1/101 đều đã bị cộng với số đối với nó = 0)
A = 1/15 + 1/35 + 1/63 + 1/99 + .........+ 1/9999