Những câu hỏi liên quan
NV
Xem chi tiết
DL
4 tháng 8 2015 lúc 16:08

\(A=\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+...+\frac{1}{91\cdot94}=\frac{1}{3}\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{91\cdot94}\right)\)

\(=\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{91}-\frac{1}{94}\right)\)

\(=\frac{1}{3}\left[\left(1-\frac{1}{94}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+...+\left(\frac{1}{91}-\frac{1}{91}\right)\right]\)

\(=\frac{1}{3}\left[\left(\frac{94}{94}-\frac{1}{94}\right)+0+...+0\right]=\frac{1}{3}\cdot\frac{93}{94}=\frac{93}{282}\)

Bình luận (0)
DP
Xem chi tiết
NN
9 tháng 4 2015 lúc 18:30

a)\(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{91.94}+\frac{2}{94.97}\)

=\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{91}-\frac{1}{94}+\frac{1}{94}-\frac{1}{97}\)(giản ước các phân số giống nhau)

=\(\frac{1}{1}-\frac{1}{97}\)

=\(\frac{96}{97}\)

Bình luận (0)
BC
9 tháng 4 2015 lúc 19:18

a)    gọi \(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.11}+...+\frac{2}{94.97}\)

               \(\Rightarrow\frac{3}{2}A=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{94.97}\)

                     \(\frac{3}{2}A=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{94}-\frac{1}{97}\)(rút gọn các phân số giống nhau)

                      \(\frac{3}{2}A=\frac{1}{1}-\frac{1}{97}\)

                       \(\frac{3}{2}A=\frac{96}{97}\left(1\right)\)

                       từ \(\left(1\right)\Leftrightarrow A=\frac{96}{97}\div\frac{3}{2}=\frac{64}{97}\)

b)\(\left(1-\frac{1}{7}\right).\left(1-\frac{1}{8}\right).\left(1-\frac{1}{9}\right).....\left(1-\frac{1}{2011}\right)\)

    \(=\frac{6}{7}.\frac{7}{8}.\frac{8}{9}......\frac{2010}{2011}\)

 \(=\frac{6.7.8.9.....2010}{7.8.9......2011}\)(rút gọn các số giống nhau)

\(=\frac{6}{2011}\)

Bình luận (0)
KF
9 tháng 4 2015 lúc 19:43

Câu a Nguyễn Triệu Yến Nhi đúng

Cậu b bao quynh Cao đúng

Bình luận (0)
NH
Xem chi tiết
SG
23 tháng 11 2016 lúc 11:00

\(A=\frac{1}{1.4}-\frac{1}{4.7}-\frac{1}{7.10}-...-\frac{1}{2011.2014}\)

\(A=\frac{1}{1.4}-\left(\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2011.2014}\right)\)

Đặt \(B=\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2011.2014}\)

\(B=\frac{1}{3}.\left(\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{2011.2014}\right)\)

\(B=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{2011}-\frac{1}{2014}\right)\)

\(B=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{2014}\right)\)

\(B=\frac{1}{3}.\frac{1005}{4028}=\frac{335}{4028}\)

\(A=\frac{1}{4}-\frac{335}{4028}=\frac{168}{1007}\)

Bình luận (0)
AT
23 tháng 11 2016 lúc 12:51

A = \(\frac{1}{1.4}-\frac{1}{4.7}-\frac{1}{7.10}-...-\frac{1}{2011.2014}\)

A = 1 + \(\frac{1}{4}\) - \(\frac{1}{4}\) + \(\frac{1}{7}\) - \(\frac{1}{7}\) + \(\frac{1}{10}\) -....- \(\frac{1}{2011}\) + \(\frac{1}{2014}\)

A = 1 + \(\frac{1}{2014}\) = \(\frac{2015}{2014}\)

 

Bình luận (0)
NT
Xem chi tiết
TT
Xem chi tiết
KS
6 tháng 10 2019 lúc 18:05

Sai đề : \(\frac{1}{2011.2014}\)

\(A=\frac{1}{1.4}-\frac{1}{4.7}-\frac{1}{7.10}-...-\frac{1}{2011.2014}\)

\(A=\frac{1}{1.4}-\left(\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2011.2014}\right)\)

Đặt \(B=\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2011.2014}\)

\(B=\frac{1}{3}\left(\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{2011.2014}\right)\)

\(B=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{2011}-\frac{1}{2014}\right)\)

\(B=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{2014}\right)\)

\(B=\frac{1}{3}.\frac{1005}{4028}=\frac{335}{4028}\)

\(A=\frac{1}{4}-\frac{335}{4028}=\frac{168}{1007}\)

Chúc bạn học tốt !!!

Bình luận (0)
LT
Xem chi tiết
ML
25 tháng 1 2017 lúc 21:16

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

\(\Rightarrow\frac{99}{100}=\frac{0.33.x}{2009}\)

\(\Rightarrow100.0.33.x=99.2009\)

\(\Rightarrow0x=198891\Rightarrow\)không có GT x thỏa mãn

Bình luận (0)
H24
Xem chi tiết
NN
17 tháng 7 2018 lúc 11:11

Ta có : 1/ 1.4 + 1/ 4.7 + .... + 1/ 2016.2019 .

      = 1 - 1/4 + 1/4 - 1/7 + ... + 1/2016 - 1/2019 .

      = 1 - 1/2019 .

      = 2018/2019 .

Bình luận (0)
NH
17 tháng 7 2018 lúc 11:14

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2016.2019}\)

\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{2016.2019}\right)\)

\(=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{2016}-\frac{1}{2019}\right)\)

\(=\frac{1}{3}.\left(1-\frac{1}{2019}\right)\)

\(=\frac{1}{3}.\frac{2018}{2019}\)

\(=\frac{2018}{6057}\)

_Chúc bạn học tốt_

Bình luận (0)
VM
Xem chi tiết
DM
24 tháng 4 2017 lúc 22:53

1/1*4+1/4*7+1/7*10+...+1/2010*2013=A

3A=3/1*4+3/4/*7+3/7*10+...+3/2010*2013

3A=1-1/4+1/4-1/7+1/7-1/10+...+1/2010-1/2013

3A=1-1/2013<1

Suy ra : A <1/3

Nho k cho minh voi nhe

Bình luận (0)
VM
25 tháng 4 2017 lúc 22:19

Thank bạn nhìu nha ^-^ Chúc bạn học tốt

Bình luận (0)
LT
Xem chi tiết
H24
25 tháng 1 2017 lúc 20:48

mk đc thầy cho làm bài này rồi nên cảm thấy nó dễ mà

Bình luận (0)
ML
25 tháng 1 2017 lúc 20:51

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\)

\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{97}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

Còn lại thì dễ rồi bạn nhé

Bình luận (0)
LT
25 tháng 1 2017 lúc 21:09

lộn đề

Bình luận (0)