Cho tam giác ABC và một điểm O tùy ý thuộc miền trong tam giác. Gọi M; N; I; L lần lượt là trung điểm AB; AC; OB; OC. Tứ giác MNIL là hình gì?
Cho (O) có bán kính R không đổi. Từ một điểm A tùy ý ở ngoài (O) sao cho OA < 2R, vẽ tiếp tuyến AB, AC (B, C là các tiếp điểm). Gọi giao điểm của OA và BC là H, lấy điểm D thuộc cung nhỏ BC sao cho HD song song với AB. Vẽ cát tuyến ADE của (O). I là trung điểm của DE.
a) Cm: 5 điểm A, B, C, O, I cùng thuộc một đường tròn, tứ giác DHOE nội tiếp được.
b) Cm: Tích OI.OA không phụ thuộc vào vị trí của điểm A.
c) Tia DH cắt OB tại G. Cm: HE ⊥ OC và EH, OC cắt nhau tại một điểm thuộc IG.
d) OI cắt BC tại M, EM cắt OC tại N. Cm NA là tiếp tuyến của đường tròn ngoại tiếp tam giác ACI.
e) Cm: AN, MD, OB đồng quy tại một điểm.
Cho (O) có bán kính R không đổi. Từ một điểm A tùy ý ở ngoài (O) sao cho OA < 2R, vẽ tiếp tuyến AB, AC (B, C là các tiếp điểm). Gọi giao điểm của OA và BC là H, lấy điểm D thuộc cung nhỏ BC sao cho HD song song với AB. Vẽ cát tuyến ADE của (O). I là trung điểm của DE.
a) Cm: 5 điểm A, B, C, O, I cùng thuộc một đường tròn, tứ giác DHOE nội tiếp được.
b) Cm: Tích OI.OA không phụ thuộc vào vị trí của điểm A.
c) Tia DH cắt OB tại G. Cm: HE ⊥ OC và EH, OC cắt nhau tại một điểm thuộc IG.
d) OI cắt BC tại M, EM cắt OC tại N. Cm NA là tiếp tuyến của đường tròn ngoại tiếp tam giác ACI.
e) Cm: AN, MD, OB đồng quy tại một điểm.
Cho (O) có bán kính R không đổi. Từ một điểm A tùy ý ở ngoài (O) sao cho OA < 2R, vẽ tiếp tuyến AB, AC (B, C là các tiếp điểm). Gọi giao điểm của OA và BC là H, lấy điểm D thuộc cung nhỏ BC sao cho HD song song với AB. Vẽ cát tuyến ADE của (O). I là trung điểm của DE.
a) Cm: 5 điểm A, B, C, O, I cùng thuộc một đường tròn, tứ giác DHOE nội tiếp được.
b) Cm: OI.OA không đổi.
c) Tia DH cắt OB tại G. Cm: HE ⊥ OC và GI, EH, OC đồng quy.
d) OI cắt BC tại M, EM cắt OC tại N. Cm NA là tiếp tuyến của đường tròn ngoại tiếp tam giác ACI.
e) Cm: AN, MD, OB đồng quy tại một điểm.
Cho tam giác ABC vuông tại A có AB > AC. Lấy M là một điểm tùy ý trên cạnh BC. Qua M kẻ đường thẳng vuông góc với BC và cắt đoạn thẳng AB tại I, cắt đưởng thẳng AC tại điểm D.
a, CM tam giác ABC đồng dạng cới tam giác MDC
b, CM rằng BI.BA = BM.BC
c, CM góc BAM = gcs ICB. Từ đó cm AB là p/g của góc MAK với K là giao điểm của CI và BD
d, Cho AB = 8cm, AC = 6cm. Khi AM là đường p/g trong tam giác ABC, hãy tính diện tích tứ giác AMBD.
1Cho tam giác đều ABC, m là điểm nằm trong tam giác. Cm MA,MB,MC là độ dài 3 cạnh của tam giác
2Cho hình vuông ABCD. Trên cạnh AB lấy điểm M tùy ý. Dựng phía ngoài hình vuông ABCD là AMEF
a, chứng minh DM vuônh góc với BF
b, gọi H là giao điểm của DM và BF. Chứng minh C,H,E thẳng hàng
4 cho tam giac ABC và điểm B nằm trong tam giác đó. Gọi M,N,Q theo thứ tự là trung điểm của AB, AC,BC. Gọi A',B',C' theo thứ tự là điểm đối xứng của P qua Q,N,M
a. Cm A'B'AB là hình bình hành
b. Cm CC',AA',BB' đồng quy tại 1 điểm
Bà con nào biết giúp tui nhen.
Giờ tui cần lời giải gấp
Cho nửa đườn tròn tâm O đường kính BC. Các điểm M, N thuộc nửa đường tròn sao cho cung BM= cung MN= cung NC. Các điểm D, E thuộc đường kính BC sao cho BD=DE=EC. Gọi A là giao điểm của MD và NE. Chứng minh tam giác ABC là tam giác đều.
Cho tam giác ABC cân tại A. Gọi AD là tia phân giác của góc A ( D thuộc BC )
a) Cm tam giác ABD = tam giác ACD
b) Cho AB = AC= 5cm; BC= 6cm . Tính AD
c) Gọi M,N lần lượt là trung điểm của AB và AC. Cm MN//BC
d) Gọi O là giao điểm AD và MN. Cm tam giác AMD cân, tam giác MDN cân.
e) Cm O là trung điểm AD
f) Tính MN
P/s: Mình đang cần gấp nên không vẽ hình được! Xin lỗi!
Bài 3 Cho tam giác ABC (AB<AC) nội tiếp trong đường tròn (O). Vẽ đường kính MN vuông góc BC (điểm M thuộc cung BC ko chứa A). c/m các tia AM, AN lần lượt là các tia phân giác trong và ngoài tại đỉnh A của tam giác ABC
Bài 4 Cho đường tròn (O) và 2 dây MA, MB vuông góc với nhau. Gọi I,K lần lượt là điểm chính giữa của các cung nhỏ MA và MB. Gọi P là giao điểm của AK và BI
a, c/m 3 điểm A,O,B thẳng hàng
b, c/m P là tâm đường tròn nội tiếp tam giác MAB
c, giả sử MA =12cm, MB = 16cm, tính bán kính của đường tròn nộ tiếp tam giác MAB
Cho tam giác ABC có góc A= 80 độ(AB> AC). Lấy D thuộc AB,E thuộc AC sao cho BD=CE. Gọi M và N thứ tự là trung điểm DE và BC. Gọi K là trung điểm DC
a, Chứng minh MK song song AC
b, Tính số đo các góc tam giác MNK
a) DM = ME, DK = KC => MK // EC hay MK//AC
b) MK//AC, KN//BD => ^KNM = ^A = 80 độ
KN = 1/2BD, MK = 1/2 EC, mà BD = EC => KN = MK => MNK là t/g cân
=> ^MNK = ^NMK = (180-80)/2 = 50 độ