Những câu hỏi liên quan
NT
Xem chi tiết
H24
12 tháng 1 2016 lúc 22:05

Với n \(\ge\) 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33

Còn 5!; 6!; …; n! đều tận cùng bởi 0

Do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3

Mà các số có chữ số tận cùng là chữ số 3 không thể là số chính phương nên nó không phải là số chính phương (đpcm)

Bình luận (0)
HV
13 tháng 1 2016 lúc 17:13

Với n $\ge$≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33

Còn 5!; 6!; …; n! đều tận cùng bởi 0

Do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3

Mà các số có chữ số tận cùng là chữ số 3 không thể là số chính phương nên nó không phải là số chính phương (đpcm)

Bình luận (0)
ZZ
Xem chi tiết
HN
Xem chi tiết
AM
Xem chi tiết
BA
Xem chi tiết
VA
Xem chi tiết
PN
9 tháng 12 2017 lúc 19:44

Đặt \(n^3-n+2=a^2\)

<=>  \(n\left(n-1\right)\left(n+1\right)+2=a^2\)

Vì \(n\left(n-1\right)\left(n+1\right)\equiv0\left(mod3\right)\)

=> \(n\left(n-1\right)\left(n+1\right)+2\equiv2\left(mod3\right)\)

Mà   1 số chính phương chia 3 dư 0 hoặc 1

=>  \(n^3-n+2\) không thể là số chính phương

Bình luận (0)
NT
Xem chi tiết
CA
Xem chi tiết
NH
12 tháng 1 2016 lúc 20:45

làm ko bt đúng hay sai:

giả sử 3^n+4 là scp=>3^n+4=a^2

mà 3 nâng lên lũy thừa bao nhiêu cũng có tận cùng là 1 số lẻ, mà số lẻ +số chẵn=SL nên a^2 là số lẻ, =>a là số lẻ

=>a có dạng 4k+1 hoặc a có dạng 4k+3

+) nếu a =4k+1 thì a^2=(4k+1)^2=(4k+1)(4k+1)=16k^2+8k+1=8m+1

+) nếu a=4k+3 thì a^2=(4k+3)^2=(4k+3)(4k+3)=16k^2+24k+9=8m+1

vậy a^2=8m+1(1)

mặt khác, nếu n chẵn thì 3^n+4=3^(2k)+4=9^k+4=(8+1)^k+4=8h+1+4=8h+5)(trái với 1)

nếu n lẻ thì n=2k+1=>3^n+4=3^(2k+1)+4=9^k.3+4=(8+1)^k.3+4=(8k+1).3+4=8h+1(trái với 1)

vậy 3^n+4 ko thể là scp

Bình luận (0)
NQ
12 tháng 1 2016 lúc 20:30

3n + 4 và số nào không thể cùng là các số CP 

Bình luận (0)
AM
Xem chi tiết